avs_driver.c 18.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2020, Renesas Electronics Corporation. All rights reserved.
3
4
5
6
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

7
8
9
10
#include <common/debug.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>

11
#include "avs_driver.h"
12
#include "cpg_registers.h"
13
14
15
16
17
18
19
20
21
22
23
24
#include "rcar_def.h"
#include "rcar_private.h"

#if (AVS_SETTING_ENABLE == 1)
#if PMIC_ROHM_BD9571
/* Read PMIC register for debug. 1:enable / 0:disable */
#define AVS_READ_PMIC_REG_ENABLE	0
/* The re-try number of times of the AVS setting. */
#define AVS_RETRY_NUM			(1U)
#endif /* PMIC_ROHM_BD9571 */

/* Base address of Adaptive Voltage Scaling module registers*/
25
#define AVS_BASE			(0xE60A0000U)
26
/* Adaptive Dynamic Voltage ADJust Parameter2 registers */
27
#define ADVADJP2			(AVS_BASE + 0x013CU)
28
29

/* Mask VOLCOND bit in ADVADJP2 registers */
30
#define ADVADJP2_VOLCOND_MASK		(0x000001FFU)	/* VOLCOND[8:0] */
31
32
33
34
35
36
37
38
39
40

#if PMIC_ROHM_BD9571
/* I2C for DVFS bit in CPG registers for module standby and software reset*/
#define CPG_SYS_DVFS_BIT		(0x04000000U)
#endif /* PMIC_ROHM_BD9571 */
/* ADVFS Module bit in CPG registers for module standby and software reset*/
#define CPG_SYS_ADVFS_BIT		(0x02000000U)

#if PMIC_ROHM_BD9571
/* Base address of IICDVFS registers*/
41
#define IIC_DVFS_BASE			(0xE60B0000U)
42
/* IIC bus data register */
43
#define IIC_ICDR			(IIC_DVFS_BASE + 0x0000U)
44
/* IIC bus control register */
45
#define IIC_ICCR			(IIC_DVFS_BASE + 0x0004U)
46
/* IIC bus status register */
47
#define IIC_ICSR			(IIC_DVFS_BASE + 0x0008U)
48
/* IIC interrupt control register */
49
#define IIC_ICIC			(IIC_DVFS_BASE + 0x000CU)
50
/* IIC clock control register low */
51
#define IIC_ICCL			(IIC_DVFS_BASE + 0x0010U)
52
/* IIC clock control register high */
53
#define IIC_ICCH			(IIC_DVFS_BASE + 0x0014U)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

/* Bit in ICSR register */
#define ICSR_BUSY			(0x10U)
#define ICSR_AL				(0x08U)
#define ICSR_TACK			(0x04U)
#define ICSR_WAIT			(0x02U)
#define ICSR_DTE			(0x01U)

/* Bit in ICIC register */
#define ICIC_TACKE			(0x04U)
#define ICIC_WAITE			(0x02U)
#define ICIC_DTEE			(0x01U)

/* I2C bus interface enable */
#define ICCR_ENABLE			(0x80U)
/* Start condition */
#define ICCR_START			(0x94U)
/* Stop condition */
#define ICCR_STOP			(0x90U)
/* Restart condition with change to receive mode change */
#define ICCR_START_RECV			(0x81U)
/* Stop condition for receive mode */
#define ICCR_STOP_RECV			(0xC0U)

/* Low-level period of SCL */
79
80
81
82
#define ICCL_FREQ_8p33M			(0x07U)	/* for CP Phy 8.3333MHz */
#define ICCL_FREQ_10M			(0x09U)	/* for CP Phy 10MHz */
#define ICCL_FREQ_12p5M			(0x0BU)	/* for CP Phy 12.5MHz */
#define ICCL_FREQ_16p66M		(0x0EU)	/* for CP Phy 16.6666MHz */
83
/* High-level period of SCL */
84
85
86
87
#define ICCH_FREQ_8p33M			(0x01U)	/* for CP Phy 8.3333MHz */
#define ICCH_FREQ_10M			(0x02U)	/* for CP Phy 10MHz */
#define ICCH_FREQ_12p5M			(0x03U)	/* for CP Phy 12.5MHz */
#define ICCH_FREQ_16p66M		(0x05U)	/* for CP Phy 16.6666MHz */
88
89

/* PMIC */
90
91
92
93
94
95
/* ROHM BD9571 slave address + (W) */
#define PMIC_W_SLAVE_ADDRESS		(0x60U)
/* ROHM BD9571 slave address + (R) */
#define PMIC_R_SLAVE_ADDRESS		(0x61U)
/* ROHM BD9571 DVFS SetVID register */
#define PMIC_DVFS_SETVID		(0x54U)
96
97
98
99
100
101
102
103
104
105
106
107
#endif /* PMIC_ROHM_BD9571  */

/* Individual information */
#define EFUSE_AVS0			(0U)
#define EFUSE_AVS_NUM			ARRAY_SIZE(init_vol_tbl)

typedef struct {
	uint32_t avs;		/* AVS code */
	uint8_t vol;		/* Voltage */
} initial_voltage_t;

static const initial_voltage_t init_vol_tbl[] = {
108
	/* AVS code, ROHM BD9571 DVFS SetVID register */
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
	{0x00U, 0x53U},		/* AVS0, 0.83V */
	{0x01U, 0x52U},		/* AVS1, 0.82V */
	{0x02U, 0x51U},		/* AVS2, 0.81V */
	{0x04U, 0x50U},		/* AVS3, 0.80V */
	{0x08U, 0x4FU},		/* AVS4, 0.79V */
	{0x10U, 0x4EU},		/* AVS5, 0.78V */
	{0x20U, 0x4DU},		/* AVS6, 0.77V */
	{0x40U, 0x4CU}		/* AVS7, 0.76V */
};

#if PMIC_ROHM_BD9571
/* Kind of AVS settings status */
typedef enum {
	avs_status_none = 0,
	avs_status_init,
	avs_status_start_condition,
	avs_status_set_slave_addr,
	avs_status_write_reg_addr,
	avs_status_write_reg_data,
	avs_status_stop_condition,
	avs_status_end,
	avs_status_complete,
	avs_status_al_start,
	avs_status_al_transfer,
	avs_status_nack,
	avs_status_error_stop,
	ave_status_error_end
} avs_status_t;

/* Kind of AVS error */
typedef enum {
	avs_error_none = 0,
	avs_error_al,
	avs_error_nack
} avs_error_t;

static avs_status_t avs_status;
static uint32_t avs_retry;
#endif /* PMIC_ROHM_BD9571  */
static uint32_t efuse_avs = EFUSE_AVS0;

#if PMIC_ROHM_BD9571
/* prototype */
static avs_error_t avs_check_error(void);
static void avs_set_iic_clock(void);
#if AVS_READ_PMIC_REG_ENABLE == 1
static uint8_t avs_read_pmic_reg(uint8_t addr);
static void avs_poll(uint8_t bit_pos, uint8_t val);
#endif
#endif /* PMIC_ROHM_BD9571 */
#endif /* (AVS_SETTING_ENABLE==1) */

/*
 * Initialize to enable the AVS setting.
 */
void rcar_avs_init(void)
{
#if (AVS_SETTING_ENABLE == 1)
	uint32_t val;

#if PMIC_ROHM_BD9571
	/* Initialize AVS status */
	avs_status = avs_status_init;
#endif /* PMIC_ROHM_BD9571 */

	/* Enable clock supply to ADVFS. */
	mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_ADVFS_BIT);

	/* Read AVS code (Initial values are derived from eFuse) */
	val = mmio_read_32(ADVADJP2) & ADVADJP2_VOLCOND_MASK;

	for (efuse_avs = 0U; efuse_avs < EFUSE_AVS_NUM; efuse_avs++) {
		if (val == init_vol_tbl[efuse_avs].avs)
			break;
	}

	if (efuse_avs >= EFUSE_AVS_NUM)
		efuse_avs = EFUSE_AVS0;	/* Not applicable */
#if PMIC_ROHM_BD9571
	/* Enable clock supply to DVFS. */
	mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_DVFS_BIT);

	/* Disable I2C module and All internal registers initialized. */
	mmio_write_8(IIC_ICCR, 0x00U);
	while ((mmio_read_8(IIC_ICCR) & ICCR_ENABLE) != 0U) {
194
		/* Disable I2C module and all internal registers initialized. */
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
		mmio_write_8(IIC_ICCR, 0x00U);
	}

	/* Set next status */
	avs_status = avs_status_start_condition;

#endif /* PMIC_ROHM_BD9571 */
#endif /* (AVS_SETTING_ENABLE==1) */
}

/*
 * Set the value of register corresponding to the voltage
 * by transfer of I2C to PIMC.
 */
void rcar_avs_setting(void)
{
#if (AVS_SETTING_ENABLE == 1)
#if PMIC_ROHM_BD9571
	avs_error_t err;

	switch (avs_status) {
	case avs_status_start_condition:
		/* Set ICCR.ICE=1 to activate the I2C module. */
		mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE);
		/* Set frequency of 400kHz */
		avs_set_iic_clock();
		/* Set ICIC.TACKE=1, ICIC.WAITE=1, ICIC.DTEE=1 to */
		/* enable interrupt control.                      */
		mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC)
			     | ICIC_TACKE | ICIC_WAITE | ICIC_DTEE);
		/* Write H'94 in ICCR to issue start condition */
		mmio_write_8(IIC_ICCR, ICCR_START);
		/* Set next status */
		avs_status = avs_status_set_slave_addr;
		break;
	case avs_status_set_slave_addr:
		/* Check error. */
		err = avs_check_error();
		if (err == avs_error_al) {
			/* Recovery sequence of just after start. */
			avs_status = avs_status_al_start;
		} else if (err == avs_error_nack) {
			/* Recovery sequence of detected NACK */
			avs_status = avs_status_nack;
		} else {
			/* Was data transmission enabled ? */
			if ((mmio_read_8(IIC_ICSR) & ICSR_DTE) == ICSR_DTE) {
				/* Clear ICIC.DTEE to disable a DTE interrupt */
				mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC)
					     & (uint8_t) (~ICIC_DTEE));
				/* Send PMIC slave address + (W) */
				mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS);
				/* Set next status */
				avs_status = avs_status_write_reg_addr;
			}
		}
		break;
	case avs_status_write_reg_addr:
		/* Check error. */
		err = avs_check_error();
		if (err == avs_error_al) {
			/* Recovery sequence of during data transfer. */
			avs_status = avs_status_al_transfer;
		} else if (err == avs_error_nack) {
			/* Recovery sequence of detected NACK */
			avs_status = avs_status_nack;
		} else {
			/* If wait state after data transmission. */
			if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
				/* Write PMIC DVFS_SetVID address */
				mmio_write_8(IIC_ICDR, PMIC_DVFS_SETVID);
				/* Clear ICSR.WAIT to exit from wait state. */
				mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
					     & (uint8_t) (~ICSR_WAIT));
				/* Set next status */
				avs_status = avs_status_write_reg_data;
			}
		}
		break;
	case avs_status_write_reg_data:
		/* Check error. */
		err = avs_check_error();
		if (err == avs_error_al) {
			/* Recovery sequence of during data transfer. */
			avs_status = avs_status_al_transfer;
		} else if (err == avs_error_nack) {
			/* Recovery sequence of detected NACK */
			avs_status = avs_status_nack;
		} else {
			/* If wait state after data transmission. */
			if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
				/* Dose efuse_avs exceed the number of */
				/* the tables? */
				if (efuse_avs >= EFUSE_AVS_NUM) {
289
290
					ERROR("%s%s=%u\n", "AVS number of ",
					      "eFuse is out of range. number",
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
					      efuse_avs);
					/* Infinite loop */
					panic();
				}
				/* Write PMIC DVFS_SetVID value */
				mmio_write_8(IIC_ICDR,
					     init_vol_tbl[efuse_avs].vol);
				/* Clear ICSR.WAIT to exit from wait state. */
				mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
					     & (uint8_t) (~ICSR_WAIT));
				/* Set next status */
				avs_status = avs_status_stop_condition;
			}
		}
		break;
	case avs_status_stop_condition:
		err = avs_check_error();
		if (err == avs_error_al) {
			/* Recovery sequence of during data transfer. */
			avs_status = avs_status_al_transfer;
		} else if (err == avs_error_nack) {
			/* Recovery sequence of detected NACK */
			avs_status = avs_status_nack;
		} else {
			/* If wait state after data transmission. */
			if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
				/* Write H'90 in ICCR to issue stop condition */
				mmio_write_8(IIC_ICCR, ICCR_STOP);
				/* Clear ICSR.WAIT to exit from wait state. */
				mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
					     & (uint8_t) (~ICSR_WAIT));
				/* Set next status */
				avs_status = avs_status_end;
			}
		}
		break;
	case avs_status_end:
		/* Is this module not busy?. */
		if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) {
			/* Set ICCR=H'00 to disable the I2C module. */
			mmio_write_8(IIC_ICCR, 0x00U);
			/* Set next status */
			avs_status = avs_status_complete;
		}
		break;
	case avs_status_al_start:
		/* Clear ICSR.AL bit */
		mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR)
					& (uint8_t) (~ICSR_AL)));
		/* Transmit a clock pulse */
		mmio_write_8(IIC_ICDR, init_vol_tbl[EFUSE_AVS0].vol);
		/* Set next status */
		avs_status = avs_status_error_stop;
		break;
	case avs_status_al_transfer:
		/* Clear ICSR.AL bit */
		mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR)
					& (uint8_t) (~ICSR_AL)));
		/* Set next status */
		avs_status = avs_status_error_stop;
		break;
	case avs_status_nack:
		/* Write H'90 in ICCR to issue stop condition */
		mmio_write_8(IIC_ICCR, ICCR_STOP);
		/* Disable a WAIT and DTEE interrupt. */
		mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC)
			     & (uint8_t) (~(ICIC_WAITE | ICIC_DTEE)));
		/* Clear ICSR.TACK bit */
		mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
			     & (uint8_t) (~ICSR_TACK));
		/* Set next status */
		avs_status = ave_status_error_end;
		break;
	case avs_status_error_stop:
		/* If wait state after data transmission. */
		if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
			/* Write H'90 in ICCR to issue stop condition */
			mmio_write_8(IIC_ICCR, ICCR_STOP);
			/* Clear ICSR.WAIT to exit from wait state. */
			mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
				     & (uint8_t) (~ICSR_WAIT));
			/* Set next status */
			avs_status = ave_status_error_end;
		}
		break;
	case ave_status_error_end:
		/* Is this module not busy?. */
		if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) {
			/* Set ICCR=H'00 to disable the I2C module. */
			mmio_write_8(IIC_ICCR, 0x00U);
			/* Increment the re-try number of times. */
			avs_retry++;
			/* Set start a re-try to status. */
			avs_status = avs_status_start_condition;
		}
		break;
	case avs_status_complete:
		/* After "avs_status" became the "avs_status_complete", */
		/* "avs_setting()" function may be called. */
		break;
	default:
		/* This case is not possible. */
		ERROR("AVS setting is in invalid status. status=%u\n",
		      avs_status);
		/* Infinite loop */
		panic();
		break;
	}
#endif /* PMIC_ROHM_BD9571 */
#endif /* (AVS_SETTING_ENABLE==1) */
}

/*
 * Finish the AVS setting.
 */
void rcar_avs_end(void)
{
#if (AVS_SETTING_ENABLE == 1)
	uint32_t mstp;

#if PMIC_ROHM_BD9571
	/* While status is not completion, be repeated. */
	while (avs_status != avs_status_complete)
		rcar_avs_setting();

	NOTICE("AVS setting succeeded. DVFS_SetVID=0x%x\n",
	       init_vol_tbl[efuse_avs].vol);

#if AVS_READ_PMIC_REG_ENABLE == 1
	{
		uint8_t addr = PMIC_DVFS_SETVID;
		uint8_t value = avs_read_pmic_reg(addr);
423
424

		NOTICE("Read PMIC register. address=0x%x value=0x%x\n",
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
		       addr, value);
	}
#endif

	/* Bit of the module which wants to disable clock supply. */
	mstp = CPG_SYS_DVFS_BIT;
	/* Disables the supply of clock signal to a module. */
	cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp);
#endif /* PMIC_ROHM_BD9571 */

	/* Bit of the module which wants to disable clock supply. */
	mstp = CPG_SYS_ADVFS_BIT;
	/* Disables the supply of clock signal to a module. */
	cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp);

#endif /* (AVS_SETTING_ENABLE==1) */
}

#if (AVS_SETTING_ENABLE == 1)
#if PMIC_ROHM_BD9571
/*
 * Check error and judge re-try.
 */
static avs_error_t avs_check_error(void)
{
	avs_error_t ret;

	if ((mmio_read_8(IIC_ICSR) & ICSR_AL) == ICSR_AL) {
453
454
		NOTICE("%s AVS status=%d Retry=%u\n",
		       "Loss of arbitration is detected.", avs_status, avs_retry);
455
456
457
458
459
460
461
462
463
464
		/* Check of retry number of times */
		if (avs_retry >= AVS_RETRY_NUM) {
			ERROR("AVS setting failed in retry. max=%u\n",
			      AVS_RETRY_NUM);
			/* Infinite loop */
			panic();
		}
		/* Set the error detected to error status. */
		ret = avs_error_al;
	} else if ((mmio_read_8(IIC_ICSR) & ICSR_TACK) == ICSR_TACK) {
465
466
		NOTICE("%s AVS status=%d Retry=%u\n",
		       "Non-acknowledge is detected.", avs_status, avs_retry);
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
		/* Check of retry number of times */
		if (avs_retry >= AVS_RETRY_NUM) {
			ERROR("AVS setting failed in retry. max=%u\n",
			      AVS_RETRY_NUM);
			/* Infinite loop */
			panic();
		}
		/* Set the error detected to error status. */
		ret = avs_error_nack;
	} else {
		/* Not error. */
		ret = avs_error_none;
	}
	return ret;
}

/*
 * Set I2C for DVFS clock.
 */
static void avs_set_iic_clock(void)
{
	uint32_t md_pin;

	/* Read Mode pin register. */
	md_pin = mmio_read_32(RCAR_MODEMR) & CHECK_MD13_MD14;
	/* Set the module clock (CP phy) for the IIC-DVFS. */
	/* CP phy is EXTAL / 2.                            */
	switch (md_pin) {
	case MD14_MD13_TYPE_0:	/* EXTAL = 16.6666MHz */
		mmio_write_8(IIC_ICCL, ICCL_FREQ_8p33M);
		mmio_write_8(IIC_ICCH, ICCH_FREQ_8p33M);
		break;
	case MD14_MD13_TYPE_1:	/* EXTAL = 20MHz */
		mmio_write_8(IIC_ICCL, ICCL_FREQ_10M);
		mmio_write_8(IIC_ICCH, ICCH_FREQ_10M);
		break;
	case MD14_MD13_TYPE_2:	/* EXTAL = 25MHz (H3/M3) */
		mmio_write_8(IIC_ICCL, ICCL_FREQ_12p5M);
		mmio_write_8(IIC_ICCH, ICCH_FREQ_12p5M);
		break;
	case MD14_MD13_TYPE_3:	/* EXTAL = 33.3333MHz */
		mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M);
		mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M);
		break;
	default:		/* This case is not possible. */
		/* CP Phy frequency is to be set for the 16.66MHz */
		mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M);
		mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M);
		break;
	}
}

#if AVS_READ_PMIC_REG_ENABLE == 1
/*
 * Read the value of the register of PMIC.
 */
static uint8_t avs_read_pmic_reg(uint8_t addr)
{
	uint8_t reg;

	/* Set ICCR.ICE=1 to activate the I2C module. */
	mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE);

	/* Set frequency of 400kHz */
	avs_set_iic_clock();

533
534
535
536
	/*
	 * Set ICIC.WAITE=1, ICIC.DTEE=1 to enable data transmission
	 * interrupt and wait interrupt.
	 */
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_WAITE | ICIC_DTEE);

	/* Write H'94 in ICCR to issue start condition */
	mmio_write_8(IIC_ICCR, ICCR_START);

	/* Wait for a until ICSR.DTE becomes 1. */
	avs_poll(ICSR_DTE, 1U);

	/* Clear ICIC.DTEE to disable a DTE interrupt. */
	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE));
	/* Send slave address of PMIC */
	mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS);

	/* Wait for a until ICSR.WAIT becomes 1. */
	avs_poll(ICSR_WAIT, 1U);

	/* write PMIC address */
	mmio_write_8(IIC_ICDR, addr);
	/* Clear ICSR.WAIT to exit from WAIT status. */
	mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));

	/* Wait for a until ICSR.WAIT becomes 1. */
	avs_poll(ICSR_WAIT, 1U);

	/* Write H'94 in ICCR to issue restart condition */
	mmio_write_8(IIC_ICCR, ICCR_START);
	/* Clear ICSR.WAIT to exit from WAIT status. */
	mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
	/* Set ICIC.DTEE=1 to enable data transmission interrupt. */
	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE);

	/* Wait for a until ICSR.DTE becomes 1. */
	avs_poll(ICSR_DTE, 1U);

	/* Clear ICIC.DTEE to disable a DTE interrupt. */
	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE));
	/* Send slave address of PMIC */
	mmio_write_8(IIC_ICDR, PMIC_R_SLAVE_ADDRESS);

	/* Wait for a until ICSR.WAIT becomes 1. */
	avs_poll(ICSR_WAIT, 1U);

	/* Write H'81 to ICCR to issue the repeated START condition     */
	/* for changing the transmission mode to the receive mode.      */
	mmio_write_8(IIC_ICCR, ICCR_START_RECV);
	/* Clear ICSR.WAIT to exit from WAIT status. */
	mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));

	/* Wait for a until ICSR.WAIT becomes 1. */
	avs_poll(ICSR_WAIT, 1U);

	/* Set ICCR to H'C0 for the STOP condition */
	mmio_write_8(IIC_ICCR, ICCR_STOP_RECV);
	/* Clear ICSR.WAIT to exit from WAIT status. */
	mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
	/* Set ICIC.DTEE=1 to enable data transmission interrupt. */
	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE);

	/* Wait for a until ICSR.DTE becomes 1. */
	avs_poll(ICSR_DTE, 1U);

	/* Receive DVFS SetVID register */
	/* Clear ICIC.DTEE to disable a DTE interrupt. */
	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE));
	/* Receive DVFS SetVID register */
	reg = mmio_read_8(IIC_ICDR);

	/* Wait until ICSR.BUSY is cleared. */
	avs_poll(ICSR_BUSY, 0U);

	/* Set ICCR=H'00 to disable the I2C module. */
	mmio_write_8(IIC_ICCR, 0x00U);

	return reg;
}

/*
 * Wait processing by the polling.
 */
static void avs_poll(uint8_t bit_pos, uint8_t val)
{
	uint8_t bit_val = 0U;

	if (val != 0U)
		bit_val = bit_pos;

	while (1) {
		if ((mmio_read_8(IIC_ICSR) & bit_pos) == bit_val)
			break;
	}
}
#endif /* AVS_READ_PMIC_REG_ENABLE */
#endif /* PMIC_ROHM_BD9571 */
#endif /* (AVS_SETTING_ENABLE==1) */