gicv2_main.c 18.9 KB
Newer Older
Soby Mathew's avatar
Soby Mathew committed
1
/*
2
 * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
Soby Mathew's avatar
Soby Mathew committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Soby Mathew's avatar
Soby Mathew committed
5
6
7
8
9
10
11
12
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <gic_common.h>
#include <gicv2.h>
13
#include <interrupt_props.h>
14
#include <spinlock.h>
15
#include "../common/gic_common_private.h"
Soby Mathew's avatar
Soby Mathew committed
16
17
18
19
#include "gicv2_private.h"

static const gicv2_driver_data_t *driver_data;

20
21
22
23
24
/*
 * Spinlock to guard registers needing read-modify-write. APIs protected by this
 * spinlock are used either at boot time (when only a single CPU is active), or
 * when the system is fully coherent.
 */
25
static spinlock_t gic_lock;
26

Soby Mathew's avatar
Soby Mathew committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
/*******************************************************************************
 * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
 * and set the priority mask register to allow all interrupts to trickle in.
 ******************************************************************************/
void gicv2_cpuif_enable(void)
{
	unsigned int val;

	assert(driver_data);
	assert(driver_data->gicc_base);

	/*
	 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1
	 * bypass.
	 */
	val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
	val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;

	/* Program the idle priority in the PMR */
	gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
	gicc_write_ctlr(driver_data->gicc_base, val);
}

/*******************************************************************************
 * Place the cpu interface in a state where it can never make a cpu exit wfi as
 * as result of an asserted interrupt. This is critical for powering down a cpu
 ******************************************************************************/
void gicv2_cpuif_disable(void)
{
	unsigned int val;

	assert(driver_data);
	assert(driver_data->gicc_base);

	/* Disable secure, non-secure interrupts and disable their bypass */
	val = gicc_read_ctlr(driver_data->gicc_base);
	val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
	gicc_write_ctlr(driver_data->gicc_base, val);
}

/*******************************************************************************
 * Per cpu gic distributor setup which will be done by all cpus after a cold
 * boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
 ******************************************************************************/
void gicv2_pcpu_distif_init(void)
{
Jeenu Viswambharan's avatar
Jeenu Viswambharan committed
75
76
	unsigned int ctlr;

Soby Mathew's avatar
Soby Mathew committed
77
78
79
	assert(driver_data);
	assert(driver_data->gicd_base);

80
81
82
83
84
85
86
87
88
89
90
91
92
93
#if !ERROR_DEPRECATED
	if (driver_data->interrupt_props != NULL) {
#endif
		gicv2_secure_ppi_sgi_setup_props(driver_data->gicd_base,
				driver_data->interrupt_props,
				driver_data->interrupt_props_num);
#if !ERROR_DEPRECATED
	} else {
		assert(driver_data->g0_interrupt_array);
		gicv2_secure_ppi_sgi_setup(driver_data->gicd_base,
				driver_data->g0_interrupt_num,
				driver_data->g0_interrupt_array);
	}
#endif
Jeenu Viswambharan's avatar
Jeenu Viswambharan committed
94
95
96
97
98
99
100

	/* Enable G0 interrupts if not already */
	ctlr = gicd_read_ctlr(driver_data->gicd_base);
	if ((ctlr & CTLR_ENABLE_G0_BIT) == 0) {
		gicd_write_ctlr(driver_data->gicd_base,
				ctlr | CTLR_ENABLE_G0_BIT);
	}
Soby Mathew's avatar
Soby Mathew committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
}

/*******************************************************************************
 * Global gic distributor init which will be done by the primary cpu after a
 * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
 * then enables the secure GIC distributor interface.
 ******************************************************************************/
void gicv2_distif_init(void)
{
	unsigned int ctlr;

	assert(driver_data);
	assert(driver_data->gicd_base);

	/* Disable the distributor before going further */
	ctlr = gicd_read_ctlr(driver_data->gicd_base);
	gicd_write_ctlr(driver_data->gicd_base,
			ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));

	/* Set the default attribute of all SPIs */
	gicv2_spis_configure_defaults(driver_data->gicd_base);

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#if !ERROR_DEPRECATED
	if (driver_data->interrupt_props != NULL) {
#endif
		gicv2_secure_spis_configure_props(driver_data->gicd_base,
				driver_data->interrupt_props,
				driver_data->interrupt_props_num);
#if !ERROR_DEPRECATED
	} else {
		assert(driver_data->g0_interrupt_array);

		/* Configure the G0 SPIs */
		gicv2_secure_spis_configure(driver_data->gicd_base,
				driver_data->g0_interrupt_num,
				driver_data->g0_interrupt_array);
	}
#endif
Soby Mathew's avatar
Soby Mathew committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

	/* Re-enable the secure SPIs now that they have been configured */
	gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
}

/*******************************************************************************
 * Initialize the ARM GICv2 driver with the provided platform inputs
 ******************************************************************************/
void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
{
	unsigned int gic_version;
	assert(plat_driver_data);
	assert(plat_driver_data->gicd_base);
	assert(plat_driver_data->gicc_base);

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#if !ERROR_DEPRECATED
	if (plat_driver_data->interrupt_props == NULL) {
		/* Interrupt properties array size must be 0 */
		assert(plat_driver_data->interrupt_props_num == 0);

		/* The platform should provide a list of secure interrupts */
		assert(plat_driver_data->g0_interrupt_array);

		/*
		 * If there are no interrupts of a particular type, then the
		 * number of interrupts of that type should be 0 and vice-versa.
		 */
		assert(plat_driver_data->g0_interrupt_array ?
				plat_driver_data->g0_interrupt_num :
				plat_driver_data->g0_interrupt_num == 0);
	}
#else
	assert(plat_driver_data->interrupt_props != NULL);
	assert(plat_driver_data->interrupt_props_num > 0);
#endif
Soby Mathew's avatar
Soby Mathew committed
174
175
176
177
178

	/* Ensure that this is a GICv2 system */
	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
	gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
					& PIDR2_ARCH_REV_MASK;
179
180
181
182
183
184
185
186
187
188
189
190
191

	/*
	 * GICv1 with security extension complies with trusted firmware
	 * GICv2 driver as far as virtualization and few tricky power
	 * features are not used. GICv2 features that are not supported
	 * by GICv1 with Security Extensions are:
	 * - virtual interrupt support.
	 * - wake up events.
	 * - writeable GIC state register (for power sequences)
	 * - interrupt priority drop.
	 * - interrupt signal bypass.
	 */
	assert(gic_version == ARCH_REV_GICV2 || gic_version == ARCH_REV_GICV1);
Soby Mathew's avatar
Soby Mathew committed
192
193
194

	driver_data = plat_driver_data;

195
196
197
198
199
200
201
202
203
204
205
	/*
	 * The GIC driver data is initialized by the primary CPU with caches
	 * enabled. When the secondary CPU boots up, it initializes the
	 * GICC/GICR interface with the caches disabled. Hence flush the
	 * driver_data to ensure coherency. This is not required if the
	 * platform has HW_ASSISTED_COHERENCY enabled.
	 */
#if !HW_ASSISTED_COHERENCY
	flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
	flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
#endif
Soby Mathew's avatar
Soby Mathew committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
	INFO("ARM GICv2 driver initialized\n");
}

/******************************************************************************
 * This function returns whether FIQ is enabled in the GIC CPU interface.
 *****************************************************************************/
unsigned int gicv2_is_fiq_enabled(void)
{
	unsigned int gicc_ctlr;

	assert(driver_data);
	assert(driver_data->gicc_base);

	gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
	return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1;
}

/*******************************************************************************
 * This function returns the type of the highest priority pending interrupt at
 * the GIC cpu interface. The return values can be one of the following :
 *   PENDING_G1_INTID   : The interrupt type is non secure Group 1.
 *   0 - 1019           : The interrupt type is secure Group 0.
 *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
 *                            sufficient priority to be signaled
 ******************************************************************************/
unsigned int gicv2_get_pending_interrupt_type(void)
{
	assert(driver_data);
	assert(driver_data->gicc_base);

	return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
}

/*******************************************************************************
 * This function returns the id of the highest priority pending interrupt at
 * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
 * interrupt pending.
 ******************************************************************************/
unsigned int gicv2_get_pending_interrupt_id(void)
{
	unsigned int id;

	assert(driver_data);
	assert(driver_data->gicc_base);

	id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;

	/*
	 * Find out which non-secure interrupt it is under the assumption that
	 * the GICC_CTLR.AckCtl bit is 0.
	 */
	if (id == PENDING_G1_INTID)
		id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;

	return id;
}

/*******************************************************************************
 * This functions reads the GIC cpu interface Interrupt Acknowledge register
 * to start handling the pending secure 0 interrupt. It returns the
 * contents of the IAR.
 ******************************************************************************/
unsigned int gicv2_acknowledge_interrupt(void)
{
	assert(driver_data);
	assert(driver_data->gicc_base);

	return gicc_read_IAR(driver_data->gicc_base);
}

/*******************************************************************************
 * This functions writes the GIC cpu interface End Of Interrupt register with
 * the passed value to finish handling the active secure group 0 interrupt.
 ******************************************************************************/
void gicv2_end_of_interrupt(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicc_base);

	gicc_write_EOIR(driver_data->gicc_base, id);
}

/*******************************************************************************
 * This function returns the type of the interrupt id depending upon the group
 * this interrupt has been configured under by the interrupt controller i.e.
 * group0 secure or group1 non secure. It returns zero for Group 0 secure and
 * one for Group 1 non secure interrupt.
 ******************************************************************************/
unsigned int gicv2_get_interrupt_group(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);

	return gicd_get_igroupr(driver_data->gicd_base, id);
}
301
302
303
304
305
306
307
308
309
310
311
312

/*******************************************************************************
 * This function returns the priority of the interrupt the processor is
 * currently servicing.
 ******************************************************************************/
unsigned int gicv2_get_running_priority(void)
{
	assert(driver_data);
	assert(driver_data->gicc_base);

	return gicc_read_rpr(driver_data->gicc_base);
}
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

/*******************************************************************************
 * This function sets the GICv2 target mask pattern for the current PE. The PE
 * target mask is used to translate linear PE index (returned by platform core
 * position) to a bit mask used when targeting interrupts to a PE, viz. when
 * raising SGIs and routing SPIs.
 ******************************************************************************/
void gicv2_set_pe_target_mask(unsigned int proc_num)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(driver_data->target_masks);
	assert(proc_num < GICV2_MAX_TARGET_PE);
	assert(proc_num < driver_data->target_masks_num);

	/* Return if the target mask is already populated */
	if (driver_data->target_masks[proc_num])
		return;

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
	/*
	 * Update target register corresponding to this CPU and flush for it to
	 * be visible to other CPUs.
	 */
	if (driver_data->target_masks[proc_num] == 0) {
		driver_data->target_masks[proc_num] =
			gicv2_get_cpuif_id(driver_data->gicd_base);
#if !HW_ASSISTED_COHERENCY
		/*
		 * PEs only update their own masks. Primary updates it with
		 * caches on. But because secondaries does it with caches off,
		 * all updates go to memory directly, and there's no danger of
		 * secondaries overwriting each others' mask, despite
		 * target_masks[] not being cache line aligned.
		 */
		flush_dcache_range((uintptr_t)
				&driver_data->target_masks[proc_num],
				sizeof(driver_data->target_masks[proc_num]));
#endif
	}
352
}
353
354
355
356
357
358
359
360
361
362
363
364
365

/*******************************************************************************
 * This function returns the active status of the interrupt (either because the
 * state is active, or active and pending).
 ******************************************************************************/
unsigned int gicv2_get_interrupt_active(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	return gicd_get_isactiver(driver_data->gicd_base, id);
}
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

/*******************************************************************************
 * This function enables the interrupt identified by id.
 ******************************************************************************/
void gicv2_enable_interrupt(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	/*
	 * Ensure that any shared variable updates depending on out of band
	 * interrupt trigger are observed before enabling interrupt.
	 */
	dsbishst();
	gicd_set_isenabler(driver_data->gicd_base, id);
}

/*******************************************************************************
 * This function disables the interrupt identified by id.
 ******************************************************************************/
void gicv2_disable_interrupt(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	/*
	 * Disable interrupt, and ensure that any shared variable updates
	 * depending on out of band interrupt trigger are observed afterwards.
	 */
	gicd_set_icenabler(driver_data->gicd_base, id);
	dsbishst();
}
400
401
402
403
404
405
406
407
408
409
410
411
412

/*******************************************************************************
 * This function sets the interrupt priority as supplied for the given interrupt
 * id.
 ******************************************************************************/
void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	gicd_set_ipriorityr(driver_data->gicd_base, id, priority);
}
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

/*******************************************************************************
 * This function assigns group for the interrupt identified by id. The group can
 * be any of GICV2_INTR_GROUP*
 ******************************************************************************/
void gicv2_set_interrupt_type(unsigned int id, unsigned int type)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	/* Serialize read-modify-write to Distributor registers */
	spin_lock(&gic_lock);
	switch (type) {
	case GICV2_INTR_GROUP1:
		gicd_set_igroupr(driver_data->gicd_base, id);
		break;
	case GICV2_INTR_GROUP0:
		gicd_clr_igroupr(driver_data->gicd_base, id);
		break;
	default:
		assert(0);
	}
	spin_unlock(&gic_lock);
}
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

/*******************************************************************************
 * This function raises the specified SGI to requested targets.
 *
 * The proc_num parameter must be the linear index of the target PE in the
 * system.
 ******************************************************************************/
void gicv2_raise_sgi(int sgi_num, int proc_num)
{
	unsigned int sgir_val, target;

	assert(driver_data);
	assert(proc_num < GICV2_MAX_TARGET_PE);
	assert(driver_data->gicd_base);

	/*
	 * Target masks array must have been supplied, and the core position
	 * should be valid.
	 */
	assert(driver_data->target_masks);
	assert(proc_num < driver_data->target_masks_num);

	/* Don't raise SGI if the mask hasn't been populated */
	target = driver_data->target_masks[proc_num];
	assert(target != 0);

	sgir_val = GICV2_SGIR_VALUE(SGIR_TGT_SPECIFIC, target, sgi_num);

	/*
	 * Ensure that any shared variable updates depending on out of band
	 * interrupt trigger are observed before raising SGI.
	 */
	dsbishst();
	gicd_write_sgir(driver_data->gicd_base, sgir_val);
}
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

/*******************************************************************************
 * This function sets the interrupt routing for the given SPI interrupt id.
 * The interrupt routing is specified in routing mode. The proc_num parameter is
 * linear index of the PE to target SPI. When proc_num < 0, the SPI may target
 * all PEs.
 ******************************************************************************/
void gicv2_set_spi_routing(unsigned int id, int proc_num)
{
	int target;

	assert(driver_data);
	assert(driver_data->gicd_base);

	assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID);

	/*
	 * Target masks array must have been supplied, and the core position
	 * should be valid.
	 */
	assert(driver_data->target_masks);
	assert(proc_num < GICV2_MAX_TARGET_PE);
	assert(proc_num < driver_data->target_masks_num);

	if (proc_num < 0) {
		/* Target all PEs */
		target = GIC_TARGET_CPU_MASK;
	} else {
		/* Don't route interrupt if the mask hasn't been populated */
		target = driver_data->target_masks[proc_num];
		assert(target != 0);
	}

	gicd_set_itargetsr(driver_data->gicd_base, id, target);
}
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

/*******************************************************************************
 * This function clears the pending status of an interrupt identified by id.
 ******************************************************************************/
void gicv2_clear_interrupt_pending(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);

	/* SGIs can't be cleared pending */
	assert(id >= MIN_PPI_ID);

	/*
	 * Clear pending interrupt, and ensure that any shared variable updates
	 * depending on out of band interrupt trigger are observed afterwards.
	 */
	gicd_set_icpendr(driver_data->gicd_base, id);
	dsbishst();
}

/*******************************************************************************
 * This function sets the pending status of an interrupt identified by id.
 ******************************************************************************/
void gicv2_set_interrupt_pending(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);

	/* SGIs can't be cleared pending */
	assert(id >= MIN_PPI_ID);

	/*
	 * Ensure that any shared variable updates depending on out of band
	 * interrupt trigger are observed before setting interrupt pending.
	 */
	dsbishst();
	gicd_set_ispendr(driver_data->gicd_base, id);
}
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

/*******************************************************************************
 * This function sets the PMR register with the supplied value. Returns the
 * original PMR.
 ******************************************************************************/
unsigned int gicv2_set_pmr(unsigned int mask)
{
	unsigned int old_mask;

	assert(driver_data);
	assert(driver_data->gicc_base);

	old_mask = gicc_read_pmr(driver_data->gicc_base);

	/*
	 * Order memory updates w.r.t. PMR write, and ensure they're visible
	 * before potential out of band interrupt trigger because of PMR update.
	 */
	dmbishst();
	gicc_write_pmr(driver_data->gicc_base, mask);
	dsbishst();

	return old_mask;
}