plat_psci_common.c 4.49 KB
Newer Older
1
/*
2
 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
 */

7
#include <arch.h>
8
#include <assert.h>
9
#include <platform.h>
10
#include <pmf.h>
11
#include <psci.h>
12

13
14
15
16
17
18
19
20
#if ENABLE_PSCI_STAT && ENABLE_PMF
#pragma weak plat_psci_stat_accounting_start
#pragma weak plat_psci_stat_accounting_stop
#pragma weak plat_psci_stat_get_residency

/* Ticks elapsed in one second by a signal of 1 MHz */
#define MHZ_TICKS_PER_SEC 1000000

21
22
23
24
25
26
27
/* Maximum time-stamp value read from architectural counters */
#ifdef AARCH32
#define MAX_TS	UINT32_MAX
#else
#define MAX_TS	UINT64_MAX
#endif

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/* Following are used as ID's to capture time-stamp */
#define PSCI_STAT_ID_ENTER_LOW_PWR		0
#define PSCI_STAT_ID_EXIT_LOW_PWR		1
#define PSCI_STAT_TOTAL_IDS			2

PMF_REGISTER_SERVICE(psci_svc, PMF_PSCI_STAT_SVC_ID, PSCI_STAT_TOTAL_IDS,
	PMF_STORE_ENABLE)

/*
 * This function calculates the stats residency in microseconds,
 * taking in account the wrap around condition.
 */
static u_register_t calc_stat_residency(unsigned long long pwrupts,
	unsigned long long pwrdnts)
{
	/* The divisor to use to convert raw timestamp into microseconds. */
	u_register_t residency_div;
	u_register_t res;

	/*
	 * Calculate divisor so that it can be directly used to
	 * convert time-stamp into microseconds.
	 */
	residency_div = read_cntfrq_el0() / MHZ_TICKS_PER_SEC;
	assert(residency_div);

	if (pwrupts < pwrdnts)
55
		res = MAX_TS - pwrdnts + pwrupts;
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
	else
		res = pwrupts - pwrdnts;

	return res / residency_div;
}

/*
 * Capture timestamp before entering a low power state.
 * No cache maintenance is required when capturing the timestamp.
 * Cache maintenance may be needed when reading these timestamps.
 */
void plat_psci_stat_accounting_start(
	__unused const psci_power_state_t *state_info)
{
	assert(state_info);
	PMF_CAPTURE_TIMESTAMP(psci_svc, PSCI_STAT_ID_ENTER_LOW_PWR,
		PMF_NO_CACHE_MAINT);
}

/*
 * Capture timestamp after exiting a low power state.
 * No cache maintenance is required when capturing the timestamp.
 * Cache maintenance may be needed when reading these timestamps.
 */
void plat_psci_stat_accounting_stop(
	__unused const psci_power_state_t *state_info)
{
	assert(state_info);
	PMF_CAPTURE_TIMESTAMP(psci_svc, PSCI_STAT_ID_EXIT_LOW_PWR,
		PMF_NO_CACHE_MAINT);
}

/*
 * Calculate the residency for the given level and power state
 * information.
 */
u_register_t plat_psci_stat_get_residency(unsigned int lvl,
	const psci_power_state_t *state_info,
	int last_cpu_idx)
{
	plat_local_state_t state;
	unsigned long long pwrup_ts = 0, pwrdn_ts = 0;
	unsigned int pmf_flags;

	assert(lvl >= PSCI_CPU_PWR_LVL && lvl <= PLAT_MAX_PWR_LVL);
	assert(state_info);
	assert(last_cpu_idx >= 0 && last_cpu_idx <= PLATFORM_CORE_COUNT);

	if (lvl == PSCI_CPU_PWR_LVL)
		assert(last_cpu_idx == plat_my_core_pos());

	/*
	 * If power down is requested, then timestamp capture will
	 * be with caches OFF.  Hence we have to do cache maintenance
	 * when reading the timestamp.
	 */
	state = state_info->pwr_domain_state[PSCI_CPU_PWR_LVL];
	if (is_local_state_off(state)) {
		pmf_flags = PMF_CACHE_MAINT;
	} else {
		assert(is_local_state_retn(state));
		pmf_flags = PMF_NO_CACHE_MAINT;
	}

	PMF_GET_TIMESTAMP_BY_INDEX(psci_svc,
		PSCI_STAT_ID_ENTER_LOW_PWR,
		last_cpu_idx,
		pmf_flags,
		pwrdn_ts);

	PMF_GET_TIMESTAMP_BY_INDEX(psci_svc,
		PSCI_STAT_ID_EXIT_LOW_PWR,
		plat_my_core_pos(),
		pmf_flags,
		pwrup_ts);

	return calc_stat_residency(pwrup_ts, pwrdn_ts);
}
#endif /* ENABLE_PSCI_STAT && ENABLE_PMF */

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*
 * The PSCI generic code uses this API to let the platform participate in state
 * coordination during a power management operation. It compares the platform
 * specific local power states requested by each cpu for a given power domain
 * and returns the coordinated target power state that the domain should
 * enter. A platform assigns a number to a local power state. This default
 * implementation assumes that the platform assigns these numbers in order of
 * increasing depth of the power state i.e. for two power states X & Y, if X < Y
 * then X represents a shallower power state than Y. As a result, the
 * coordinated target local power state for a power domain will be the minimum
 * of the requested local power states.
 */
plat_local_state_t plat_get_target_pwr_state(unsigned int lvl,
					     const plat_local_state_t *states,
					     unsigned int ncpu)
151
{
152
	plat_local_state_t target = PLAT_MAX_OFF_STATE, temp;
153

154
	assert(ncpu);
155

156
157
158
159
160
	do {
		temp = *states++;
		if (temp < target)
			target = temp;
	} while (--ncpu);
161

162
	return target;
163
}