psci_afflvl_on.c 15.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
32
#include <arch.h>
#include <arch_helpers.h>
33
#include <assert.h>
34
#include <bl_common.h>
35
#include <bl31.h>
36
#include <context_mgmt.h>
37
#include <runtime_svc.h>
38
#include <stddef.h>
39
#include "psci_private.h"
40

41
42
typedef int (*afflvl_on_handler_t)(unsigned long,
				 aff_map_node_t *,
43
44
45
46
47
48
49
				 unsigned long,
				 unsigned long);

/*******************************************************************************
 * This function checks whether a cpu which has been requested to be turned on
 * is OFF to begin with.
 ******************************************************************************/
50
static int cpu_on_validate_state(aff_map_node_t *node)
51
52
53
54
{
	unsigned int psci_state;

	/* Get the raw psci state */
55
	psci_state = psci_get_state(node);
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	if (psci_state == PSCI_STATE_ON || psci_state == PSCI_STATE_SUSPEND)
		return PSCI_E_ALREADY_ON;

	if (psci_state == PSCI_STATE_ON_PENDING)
		return PSCI_E_ON_PENDING;

	assert(psci_state == PSCI_STATE_OFF);
	return PSCI_E_SUCCESS;
}

/*******************************************************************************
 * Handler routine to turn a cpu on. It takes care of any generic, architectural
 * or platform specific setup required.
 * TODO: Split this code across separate handlers for each type of setup?
 ******************************************************************************/
static int psci_afflvl0_on(unsigned long target_cpu,
73
			   aff_map_node_t *cpu_node,
74
75
76
77
78
79
80
81
82
83
84
85
86
87
			   unsigned long ns_entrypoint,
			   unsigned long context_id)
{
	unsigned int index, plat_state;
	unsigned long psci_entrypoint;
	int rc;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

	/*
	 * Generic management: Ensure that the cpu is off to be
	 * turned on
	 */
88
	rc = cpu_on_validate_state(cpu_node);
89
90
91
	if (rc != PSCI_E_SUCCESS)
		return rc;

92
93
94
95
96
	/*
	 * Call the cpu on handler registered by the Secure Payload Dispatcher
	 * to let it do any bookeeping. If the handler encounters an error, it's
	 * expected to assert within
	 */
97
98
	if (psci_spd_pm && psci_spd_pm->svc_on)
		psci_spd_pm->svc_on(target_cpu);
99

100
101
102
103
104
105
106
107
108
109
110
111
112
	/*
	 * Arch. management: Derive the re-entry information for
	 * the non-secure world from the non-secure state from
	 * where this call originated.
	 */
	index = cpu_node->data;
	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;

113
114
115
	/* State management: Set this cpu's state as ON PENDING */
	psci_set_state(cpu_node, PSCI_STATE_ON_PENDING);

116
117
118
119
120
121
122
123
	/*
	 * Plat. management: Give the platform the current state
	 * of the target cpu to allow it to perform the necessary
	 * steps to power on.
	 */
	if (psci_plat_pm_ops->affinst_on) {

		/* Get the current physical state of this cpu */
124
		plat_state = psci_get_phys_state(cpu_node);
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
		rc = psci_plat_pm_ops->affinst_on(target_cpu,
						  psci_entrypoint,
						  ns_entrypoint,
						  cpu_node->level,
						  plat_state);
	}

	return rc;
}

/*******************************************************************************
 * Handler routine to turn a cluster on. It takes care or any generic, arch.
 * or platform specific setup required.
 * TODO: Split this code across separate handlers for each type of setup?
 ******************************************************************************/
static int psci_afflvl1_on(unsigned long target_cpu,
141
			   aff_map_node_t *cluster_node,
142
143
144
145
146
147
148
149
150
151
152
153
154
155
			   unsigned long ns_entrypoint,
			   unsigned long context_id)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * There is no generic and arch. specific cluster
	 * management required
	 */

156
157
	/* State management: Is not required while turning a cluster on */

158
159
160
161
162
163
	/*
	 * Plat. management: Give the platform the current state
	 * of the target cpu to allow it to perform the necessary
	 * steps to power on.
	 */
	if (psci_plat_pm_ops->affinst_on) {
164
		plat_state = psci_get_phys_state(cluster_node);
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
		psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
		rc = psci_plat_pm_ops->affinst_on(target_cpu,
						  psci_entrypoint,
						  ns_entrypoint,
						  cluster_node->level,
						  plat_state);
	}

	return rc;
}

/*******************************************************************************
 * Handler routine to turn a cluster of clusters on. It takes care or any
 * generic, arch. or platform specific setup required.
 * TODO: Split this code across separate handlers for each type of setup?
 ******************************************************************************/
static int psci_afflvl2_on(unsigned long target_cpu,
182
			   aff_map_node_t *system_node,
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
			   unsigned long ns_entrypoint,
			   unsigned long context_id)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond affinity level 2 in this psci imp. */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * There is no generic and arch. specific system management
	 * required
	 */

198
199
	/* State management: Is not required while turning a system on */

200
201
202
203
204
205
	/*
	 * Plat. management: Give the platform the current state
	 * of the target cpu to allow it to perform the necessary
	 * steps to power on.
	 */
	if (psci_plat_pm_ops->affinst_on) {
206
		plat_state = psci_get_phys_state(system_node);
207
208
209
210
211
212
213
214
215
216
217
218
		psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
		rc = psci_plat_pm_ops->affinst_on(target_cpu,
						  psci_entrypoint,
						  ns_entrypoint,
						  system_node->level,
						  plat_state);
	}

	return rc;
}

/* Private data structure to make this handlers accessible through indexing */
219
static const afflvl_on_handler_t psci_afflvl_on_handlers[] = {
220
221
222
223
224
225
	psci_afflvl0_on,
	psci_afflvl1_on,
	psci_afflvl2_on,
};

/*******************************************************************************
226
227
228
229
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the on handler for the corresponding affinity
 * levels
 ******************************************************************************/
230
static int psci_call_on_handlers(mpidr_aff_map_nodes_t target_cpu_nodes,
231
232
233
234
235
236
237
				 int start_afflvl,
				 int end_afflvl,
				 unsigned long target_cpu,
				 unsigned long entrypoint,
				 unsigned long context_id)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
238
	aff_map_node_t *node;
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

	for (level = end_afflvl; level >= start_afflvl; level--) {
		node = target_cpu_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of undoing what we might have setup at higher
		 * affinity levels.
		 */
		rc = psci_afflvl_on_handlers[level](target_cpu,
						    node,
						    entrypoint,
						    context_id);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Generic handler which is called to physically power on a cpu identified by
 * its mpidr. It traverses through all the affinity levels performing generic,
 * architectural, platform setup and state management e.g. for a cpu that is
 * to be powered on, it will ensure that enough information is stashed for it
 * to resume execution in the non-secure security state.
 *
 * The state of all the relevant affinity levels is changed after calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is currently in.
 *
 * The affinity level specific handlers are called in descending order i.e. from
 * the highest to the lowest affinity level implemented by the platform because
 * to turn on affinity level X it is neccesary to turn on affinity level X + 1
 * first.
276
277
278
279
 ******************************************************************************/
int psci_afflvl_on(unsigned long target_cpu,
		   unsigned long entrypoint,
		   unsigned long context_id,
280
281
		   int start_afflvl,
		   int end_afflvl)
282
{
283
	int rc = PSCI_E_SUCCESS;
284
	mpidr_aff_map_nodes_t target_cpu_nodes;
285
286
287
	unsigned long mpidr = read_mpidr() & MPIDR_AFFINITY_MASK;

	/*
288
289
290
291
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
292
	 */
293
294
295
296
297
298
299
	rc = psci_get_aff_map_nodes(target_cpu,
				    start_afflvl,
				    end_afflvl,
				    target_cpu_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;

300
301

	/*
302
303
304
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
305
	 */
306
307
308
309
310
311
312
313
314
315
316
317
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  target_cpu_nodes);

	/* Perform generic, architecture and platform specific handling. */
	rc = psci_call_on_handlers(target_cpu_nodes,
				   start_afflvl,
				   end_afflvl,
				   target_cpu,
				   entrypoint,
				   context_id);
318
319
320

	/*
	 * This loop releases the lock corresponding to each affinity level
321
	 * in the reverse order to which they were acquired.
322
	 */
323
324
325
326
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  target_cpu_nodes);
327
328
329
330
331
332
333
334
335

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity power on request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
static unsigned int psci_afflvl0_on_finish(unsigned long mpidr,
336
					   aff_map_node_t *cpu_node)
337
{
338
	unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
339
340
341

	assert(cpu_node->level == MPIDR_AFFLVL0);

342
	/* Ensure we have been explicitly woken up by another cpu */
343
	state = psci_get_state(cpu_node);
344
345
	assert(state == PSCI_STATE_ON_PENDING);

346
347
348
349
350
351
352
353
	/*
	 * Plat. management: Perform the platform specific actions
	 * for this cpu e.g. enabling the gic or zeroing the mailbox
	 * register. The actual state of this cpu has already been
	 * changed.
	 */
	if (psci_plat_pm_ops->affinst_on_finish) {

354
		/* Get the physical state of this cpu */
355
		plat_state = get_phys_state(state);
356
357
358
359
360
361
362
363
364
		rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
							 cpu_node->level,
							 plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/*
	 * Arch. management: Turn on mmu & restore architectural state
	 */
365
	enable_mmu_el3();
366
367
368
369
370
371
372
373

	/*
	 * All the platform specific actions for turning this cpu
	 * on have completed. Perform enough arch.initialization
	 * to run in the non-secure address space.
	 */
	bl31_arch_setup();

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
	/*
	 * Use the more complex exception vectors to enable SPD
	 * initialisation. SP_EL3 should point to a 'cpu_context'
	 * structure which has an exception stack allocated. The
	 * calling cpu should have set the context already
	 */
	assert(cm_get_context(mpidr, NON_SECURE));
	cm_set_next_eret_context(NON_SECURE);
	write_vbar_el3((uint64_t) runtime_exceptions);

	/*
	 * Call the cpu on finish handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
389
390
	if (psci_spd_pm && psci_spd_pm->svc_on_finish)
		psci_spd_pm->svc_on_finish(0);
391

392
393
394
	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the cpu_on
395
	 * call to set this cpu on its way. First get the index
396
397
398
	 * for restoring the re-entry info
	 */
	index = cpu_node->data;
399
	psci_get_ns_entry_info(index);
400

401
402
403
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

404
405
406
407
408
409
410
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

	return rc;
}

static unsigned int psci_afflvl1_on_finish(unsigned long mpidr,
411
					   aff_map_node_t *cluster_node)
412
{
413
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
414
415
416
417
418
419
420
421
422
423
424
425

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_on_finish) {
426
427

		/* Get the physical state of this cluster */
428
		plat_state = psci_get_phys_state(cluster_node);
429
430
431
432
433
434
		rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
							 cluster_node->level,
							 plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

435
436
437
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

438
439
440
441
442
	return rc;
}


static unsigned int psci_afflvl2_on_finish(unsigned long mpidr,
443
					   aff_map_node_t *system_node)
444
{
445
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_on_finish) {
464
465

		/* Get the physical state of the system */
466
		plat_state = psci_get_phys_state(system_node);
467
468
469
470
471
472
		rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
							 system_node->level,
							 plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

473
474
475
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

476
477
478
	return rc;
}

479
const afflvl_power_on_finisher_t psci_afflvl_on_finishers[] = {
480
481
482
483
484
	psci_afflvl0_on_finish,
	psci_afflvl1_on_finish,
	psci_afflvl2_on_finish,
};