stm32mp1_ddr.c 25.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
3
4
5
6
 *
 * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
 */

7
#include <errno.h>
8
9
#include <stddef.h>

10
11
#include <platform_def.h>

12
13
#include <arch.h>
#include <arch_helpers.h>
14
15
#include <common/debug.h>
#include <drivers/delay_timer.h>
16
#include <drivers/st/stm32mp_pmic.h>
17
18
19
20
21
22
23
#include <drivers/st/stm32mp1_ddr.h>
#include <drivers/st/stm32mp1_ddr_regs.h>
#include <drivers/st/stm32mp1_pwr.h>
#include <drivers/st/stm32mp1_ram.h>
#include <lib/mmio.h>
#include <plat/common/platform.h>

24
25
26
27
28
29
30
31
struct reg_desc {
	const char *name;
	uint16_t offset;	/* Offset for base address */
	uint8_t par_offset;	/* Offset for parameter array */
};

#define INVALID_OFFSET	0xFFU

32
#define TIMEOUT_US_1S	1000000U
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

#define DDRCTL_REG(x, y)					\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
		.par_offset = offsetof(struct y, x)		\
	}

#define DDRPHY_REG(x, y)					\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
		.par_offset = offsetof(struct y, x)		\
	}

#define DDRCTL_REG_REG(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
static const struct reg_desc ddr_reg[] = {
	DDRCTL_REG_REG(mstr),
	DDRCTL_REG_REG(mrctrl0),
	DDRCTL_REG_REG(mrctrl1),
	DDRCTL_REG_REG(derateen),
	DDRCTL_REG_REG(derateint),
	DDRCTL_REG_REG(pwrctl),
	DDRCTL_REG_REG(pwrtmg),
	DDRCTL_REG_REG(hwlpctl),
	DDRCTL_REG_REG(rfshctl0),
	DDRCTL_REG_REG(rfshctl3),
	DDRCTL_REG_REG(crcparctl0),
	DDRCTL_REG_REG(zqctl0),
	DDRCTL_REG_REG(dfitmg0),
	DDRCTL_REG_REG(dfitmg1),
	DDRCTL_REG_REG(dfilpcfg0),
	DDRCTL_REG_REG(dfiupd0),
	DDRCTL_REG_REG(dfiupd1),
	DDRCTL_REG_REG(dfiupd2),
	DDRCTL_REG_REG(dfiphymstr),
	DDRCTL_REG_REG(odtmap),
	DDRCTL_REG_REG(dbg0),
	DDRCTL_REG_REG(dbg1),
	DDRCTL_REG_REG(dbgcmd),
	DDRCTL_REG_REG(poisoncfg),
	DDRCTL_REG_REG(pccfg),
};

#define DDRCTL_REG_TIMING(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
static const struct reg_desc ddr_timing[] = {
	DDRCTL_REG_TIMING(rfshtmg),
	DDRCTL_REG_TIMING(dramtmg0),
	DDRCTL_REG_TIMING(dramtmg1),
	DDRCTL_REG_TIMING(dramtmg2),
	DDRCTL_REG_TIMING(dramtmg3),
	DDRCTL_REG_TIMING(dramtmg4),
	DDRCTL_REG_TIMING(dramtmg5),
	DDRCTL_REG_TIMING(dramtmg6),
	DDRCTL_REG_TIMING(dramtmg7),
	DDRCTL_REG_TIMING(dramtmg8),
	DDRCTL_REG_TIMING(dramtmg14),
	DDRCTL_REG_TIMING(odtcfg),
};

#define DDRCTL_REG_MAP(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_map)
static const struct reg_desc ddr_map[] = {
	DDRCTL_REG_MAP(addrmap1),
	DDRCTL_REG_MAP(addrmap2),
	DDRCTL_REG_MAP(addrmap3),
	DDRCTL_REG_MAP(addrmap4),
	DDRCTL_REG_MAP(addrmap5),
	DDRCTL_REG_MAP(addrmap6),
	DDRCTL_REG_MAP(addrmap9),
	DDRCTL_REG_MAP(addrmap10),
	DDRCTL_REG_MAP(addrmap11),
};

#define DDRCTL_REG_PERF(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
static const struct reg_desc ddr_perf[] = {
	DDRCTL_REG_PERF(sched),
	DDRCTL_REG_PERF(sched1),
	DDRCTL_REG_PERF(perfhpr1),
	DDRCTL_REG_PERF(perflpr1),
	DDRCTL_REG_PERF(perfwr1),
	DDRCTL_REG_PERF(pcfgr_0),
	DDRCTL_REG_PERF(pcfgw_0),
	DDRCTL_REG_PERF(pcfgqos0_0),
	DDRCTL_REG_PERF(pcfgqos1_0),
	DDRCTL_REG_PERF(pcfgwqos0_0),
	DDRCTL_REG_PERF(pcfgwqos1_0),
	DDRCTL_REG_PERF(pcfgr_1),
	DDRCTL_REG_PERF(pcfgw_1),
	DDRCTL_REG_PERF(pcfgqos0_1),
	DDRCTL_REG_PERF(pcfgqos1_1),
	DDRCTL_REG_PERF(pcfgwqos0_1),
	DDRCTL_REG_PERF(pcfgwqos1_1),
};

#define DDRPHY_REG_REG(x)	DDRPHY_REG(x, stm32mp1_ddrphy_reg)
static const struct reg_desc ddrphy_reg[] = {
	DDRPHY_REG_REG(pgcr),
	DDRPHY_REG_REG(aciocr),
	DDRPHY_REG_REG(dxccr),
	DDRPHY_REG_REG(dsgcr),
	DDRPHY_REG_REG(dcr),
	DDRPHY_REG_REG(odtcr),
	DDRPHY_REG_REG(zq0cr1),
	DDRPHY_REG_REG(dx0gcr),
	DDRPHY_REG_REG(dx1gcr),
	DDRPHY_REG_REG(dx2gcr),
	DDRPHY_REG_REG(dx3gcr),
};

#define DDRPHY_REG_TIMING(x)	DDRPHY_REG(x, stm32mp1_ddrphy_timing)
static const struct reg_desc ddrphy_timing[] = {
	DDRPHY_REG_TIMING(ptr0),
	DDRPHY_REG_TIMING(ptr1),
	DDRPHY_REG_TIMING(ptr2),
	DDRPHY_REG_TIMING(dtpr0),
	DDRPHY_REG_TIMING(dtpr1),
	DDRPHY_REG_TIMING(dtpr2),
	DDRPHY_REG_TIMING(mr0),
	DDRPHY_REG_TIMING(mr1),
	DDRPHY_REG_TIMING(mr2),
	DDRPHY_REG_TIMING(mr3),
};

#define DDRPHY_REG_CAL(x)	DDRPHY_REG(x, stm32mp1_ddrphy_cal)
static const struct reg_desc ddrphy_cal[] = {
	DDRPHY_REG_CAL(dx0dllcr),
	DDRPHY_REG_CAL(dx0dqtr),
	DDRPHY_REG_CAL(dx0dqstr),
	DDRPHY_REG_CAL(dx1dllcr),
	DDRPHY_REG_CAL(dx1dqtr),
	DDRPHY_REG_CAL(dx1dqstr),
	DDRPHY_REG_CAL(dx2dllcr),
	DDRPHY_REG_CAL(dx2dqtr),
	DDRPHY_REG_CAL(dx2dqstr),
	DDRPHY_REG_CAL(dx3dllcr),
	DDRPHY_REG_CAL(dx3dqtr),
	DDRPHY_REG_CAL(dx3dqstr),
};

#define DDR_REG_DYN(x)						\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
		.par_offset = INVALID_OFFSET \
	}

static const struct reg_desc ddr_dyn[] = {
	DDR_REG_DYN(stat),
	DDR_REG_DYN(init0),
	DDR_REG_DYN(dfimisc),
	DDR_REG_DYN(dfistat),
	DDR_REG_DYN(swctl),
	DDR_REG_DYN(swstat),
	DDR_REG_DYN(pctrl_0),
	DDR_REG_DYN(pctrl_1),
};

#define DDRPHY_REG_DYN(x)					\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
		.par_offset = INVALID_OFFSET			\
	}

static const struct reg_desc ddrphy_dyn[] = {
	DDRPHY_REG_DYN(pir),
	DDRPHY_REG_DYN(pgsr),
};

enum reg_type {
	REG_REG,
	REG_TIMING,
	REG_PERF,
	REG_MAP,
	REGPHY_REG,
	REGPHY_TIMING,
	REGPHY_CAL,
/*
 * Dynamic registers => managed in driver or not changed,
 * can be dumped in interactive mode.
 */
	REG_DYN,
	REGPHY_DYN,
	REG_TYPE_NB
};

enum base_type {
	DDR_BASE,
	DDRPHY_BASE,
	NONE_BASE
};

struct ddr_reg_info {
	const char *name;
	const struct reg_desc *desc;
	uint8_t size;
	enum base_type base;
};

static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
	[REG_REG] = {
234
235
236
237
		.name = "static",
		.desc = ddr_reg,
		.size = ARRAY_SIZE(ddr_reg),
		.base = DDR_BASE
238
239
	},
	[REG_TIMING] = {
240
241
242
243
		.name = "timing",
		.desc = ddr_timing,
		.size = ARRAY_SIZE(ddr_timing),
		.base = DDR_BASE
244
245
	},
	[REG_PERF] = {
246
247
248
249
		.name = "perf",
		.desc = ddr_perf,
		.size = ARRAY_SIZE(ddr_perf),
		.base = DDR_BASE
250
251
	},
	[REG_MAP] = {
252
253
254
255
		.name = "map",
		.desc = ddr_map,
		.size = ARRAY_SIZE(ddr_map),
		.base = DDR_BASE
256
257
	},
	[REGPHY_REG] = {
258
259
260
261
		.name = "static",
		.desc = ddrphy_reg,
		.size = ARRAY_SIZE(ddrphy_reg),
		.base = DDRPHY_BASE
262
263
	},
	[REGPHY_TIMING] = {
264
265
266
267
		.name = "timing",
		.desc = ddrphy_timing,
		.size = ARRAY_SIZE(ddrphy_timing),
		.base = DDRPHY_BASE
268
269
	},
	[REGPHY_CAL] = {
270
271
272
273
		.name = "cal",
		.desc = ddrphy_cal,
		.size = ARRAY_SIZE(ddrphy_cal),
		.base = DDRPHY_BASE
274
275
	},
	[REG_DYN] = {
276
277
278
279
		.name = "dyn",
		.desc = ddr_dyn,
		.size = ARRAY_SIZE(ddr_dyn),
		.base = DDR_BASE
280
281
	},
	[REGPHY_DYN] = {
282
283
284
285
		.name = "dyn",
		.desc = ddrphy_dyn,
		.size = ARRAY_SIZE(ddrphy_dyn),
		.base = DDRPHY_BASE
286
287
288
	},
};

289
static uintptr_t get_base_addr(const struct ddr_info *priv, enum base_type base)
290
291
{
	if (base == DDRPHY_BASE) {
292
		return (uintptr_t)priv->phy;
293
	} else {
294
		return (uintptr_t)priv->ctl;
295
296
297
298
299
300
301
302
	}
}

static void set_reg(const struct ddr_info *priv,
		    enum reg_type type,
		    const void *param)
{
	unsigned int i;
303
	unsigned int value;
304
	enum base_type base = ddr_registers[type].base;
305
	uintptr_t base_addr = get_base_addr(priv, base);
306
307
308
309
	const struct reg_desc *desc = ddr_registers[type].desc;

	VERBOSE("init %s\n", ddr_registers[type].name);
	for (i = 0; i < ddr_registers[type].size; i++) {
310
311
		uintptr_t ptr = base_addr + desc[i].offset;

312
313
314
315
		if (desc[i].par_offset == INVALID_OFFSET) {
			ERROR("invalid parameter offset for %s", desc[i].name);
			panic();
		} else {
316
			value = *((uint32_t *)((uintptr_t)param +
317
					       desc[i].par_offset));
318
			mmio_write_32(ptr, value);
319
320
321
322
323
324
325
326
		}
	}
}

static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
{
	uint32_t pgsr;
	int error = 0;
327
	uint64_t timeout = timeout_init_us(TIMEOUT_US_1S);
328
329

	do {
330
		pgsr = mmio_read_32((uintptr_t)&phy->pgsr);
331

332
333
334
335
		VERBOSE("  > [0x%lx] pgsr = 0x%x &\n",
			(uintptr_t)&phy->pgsr, pgsr);

		if (timeout_elapsed(timeout)) {
336
337
			panic();
		}
338

339
340
341
342
		if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) {
			VERBOSE("DQS Gate Trainig Error\n");
			error++;
		}
343

344
345
346
347
		if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) {
			VERBOSE("DQS Gate Trainig Intermittent Error\n");
			error++;
		}
348

349
350
351
352
		if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) {
			VERBOSE("DQS Drift Error\n");
			error++;
		}
353

354
355
356
357
		if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) {
			VERBOSE("Read Valid Training Error\n");
			error++;
		}
358

359
360
361
362
		if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) {
			VERBOSE("Read Valid Training Intermittent Error\n");
			error++;
		}
363
	} while (((pgsr & DDRPHYC_PGSR_IDONE) == 0U) && (error == 0));
364
365
	VERBOSE("\n[0x%lx] pgsr = 0x%x\n",
		(uintptr_t)&phy->pgsr, pgsr);
366
367
368
369
370
371
}

static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir)
{
	uint32_t pir_init = pir | DDRPHYC_PIR_INIT;

372
373
374
375
	mmio_write_32((uintptr_t)&phy->pir, pir_init);
	VERBOSE("[0x%lx] pir = 0x%x -> 0x%x\n",
		(uintptr_t)&phy->pir, pir_init,
		mmio_read_32((uintptr_t)&phy->pir));
376
377
378
379
380
381
382
383
384
385
386

	/* Need to wait 10 configuration clock before start polling */
	udelay(10);

	/* Wait DRAM initialization and Gate Training Evaluation complete */
	stm32mp1_ddrphy_idone_wait(phy);
}

/* Start quasi dynamic register update */
static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl)
{
387
388
389
	mmio_clrbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
	VERBOSE("[0x%lx] swctl = 0x%x\n",
		(uintptr_t)&ctl->swctl,  mmio_read_32((uintptr_t)&ctl->swctl));
390
391
392
393
394
}

/* Wait quasi dynamic register update */
static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
{
395
	uint64_t timeout;
396
397
	uint32_t swstat;

398
399
400
	mmio_setbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
	VERBOSE("[0x%lx] swctl = 0x%x\n",
		(uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl));
401

402
	timeout = timeout_init_us(TIMEOUT_US_1S);
403
	do {
404
405
406
		swstat = mmio_read_32((uintptr_t)&ctl->swstat);
		VERBOSE("[0x%lx] swstat = 0x%x ",
			(uintptr_t)&ctl->swstat, swstat);
407
		if (timeout_elapsed(timeout)) {
408
409
410
411
			panic();
		}
	} while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U);

412
413
	VERBOSE("[0x%lx] swstat = 0x%x\n",
		(uintptr_t)&ctl->swstat, swstat);
414
415
416
417
418
}

/* Wait quasi dynamic register update */
static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode)
{
419
	uint64_t timeout;
420
421
422
	uint32_t stat;
	int break_loop = 0;

423
	timeout = timeout_init_us(TIMEOUT_US_1S);
424
	for ( ; ; ) {
425
426
427
		uint32_t operating_mode;
		uint32_t selref_type;

428
		stat = mmio_read_32((uintptr_t)&priv->ctl->stat);
429
430
		operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK;
		selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK;
431
432
		VERBOSE("[0x%lx] stat = 0x%x\n",
			(uintptr_t)&priv->ctl->stat, stat);
433
		if (timeout_elapsed(timeout)) {
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
			panic();
		}

		if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
			/*
			 * Self-refresh due to software
			 * => checking also STAT.selfref_type.
			 */
			if ((operating_mode ==
			     DDRCTRL_STAT_OPERATING_MODE_SR) &&
			    (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) {
				break_loop = 1;
			}
		} else if (operating_mode == mode) {
			break_loop = 1;
		} else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) &&
			   (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) &&
			   (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) {
			/* Normal mode: handle also automatic self refresh */
			break_loop = 1;
		}

		if (break_loop == 1) {
			break;
		}
	}

461
462
	VERBOSE("[0x%lx] stat = 0x%x\n",
		(uintptr_t)&priv->ctl->stat, stat);
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
}

/* Mode Register Writes (MRW or MRS) */
static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr,
					 uint32_t data)
{
	uint32_t mrctrl0;

	VERBOSE("MRS: %d = %x\n", addr, data);

	/*
	 * 1. Poll MRSTAT.mr_wr_busy until it is '0'.
	 *    This checks that there is no outstanding MR transaction.
	 *    No write should be performed to MRCTRL0 and MRCTRL1
	 *    if MRSTAT.mr_wr_busy = 1.
	 */
479
	while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
480
481
482
483
484
485
486
487
488
489
490
491
		DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
		;
	}

	/*
	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
	 *    and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
	 */
	mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE |
		  DDRCTRL_MRCTRL0_MR_RANK_ALL |
		  (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) &
		   DDRCTRL_MRCTRL0_MR_ADDR_MASK);
492
493
494
495
496
497
498
499
	mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
	VERBOSE("[0x%lx] mrctrl0 = 0x%x (0x%x)\n",
		(uintptr_t)&priv->ctl->mrctrl0,
		mmio_read_32((uintptr_t)&priv->ctl->mrctrl0), mrctrl0);
	mmio_write_32((uintptr_t)&priv->ctl->mrctrl1, data);
	VERBOSE("[0x%lx] mrctrl1 = 0x%x\n",
		(uintptr_t)&priv->ctl->mrctrl1,
		mmio_read_32((uintptr_t)&priv->ctl->mrctrl1));
500
501
502
503
504
505
506
507
508

	/*
	 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This
	 *    bit is self-clearing, and triggers the MR transaction.
	 *    The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
	 *    the MR transaction to SDRAM, and no further access can be
	 *    initiated until it is deasserted.
	 */
	mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR;
509
	mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
510

511
	while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
512
513
514
515
	       DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
		;
	}

516
517
	VERBOSE("[0x%lx] mrctrl0 = 0x%x\n",
		(uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
518
519
520
521
522
}

/* Switch DDR3 from DLL-on to DLL-off */
static void stm32mp1_ddr3_dll_off(struct ddr_info *priv)
{
523
524
	uint32_t mr1 = mmio_read_32((uintptr_t)&priv->phy->mr1);
	uint32_t mr2 = mmio_read_32((uintptr_t)&priv->phy->mr2);
525
526
527
528
529
530
531
532
533
	uint32_t dbgcam;

	VERBOSE("mr1: 0x%x\n", mr1);
	VERBOSE("mr2: 0x%x\n", mr2);

	/*
	 * 1. Set the DBG1.dis_hif = 1.
	 *    This prevents further reads/writes being received on the HIF.
	 */
534
535
536
537
	mmio_setbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
	VERBOSE("[0x%lx] dbg1 = 0x%x\n",
		(uintptr_t)&priv->ctl->dbg1,
		mmio_read_32((uintptr_t)&priv->ctl->dbg1));
538
539
540
541
542
543
544
545
546
547

	/*
	 * 2. Ensure all commands have been flushed from the uMCTL2 by polling
	 *    DBGCAM.wr_data_pipeline_empty = 1,
	 *    DBGCAM.rd_data_pipeline_empty = 1,
	 *    DBGCAM.dbg_wr_q_depth = 0 ,
	 *    DBGCAM.dbg_lpr_q_depth = 0, and
	 *    DBGCAM.dbg_hpr_q_depth = 0.
	 */
	do {
548
549
550
		dbgcam = mmio_read_32((uintptr_t)&priv->ctl->dbgcam);
		VERBOSE("[0x%lx] dbgcam = 0x%x\n",
			(uintptr_t)&priv->ctl->dbgcam, dbgcam);
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
	} while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) ==
		   DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) &&
		 ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U));

	/*
	 * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
	 *    to disable RTT_NOM:
	 *    a. DDR3: Write to MR1[9], MR1[6] and MR1[2]
	 *    b. DDR4: Write to MR1[10:8]
	 */
	mr1 &= ~(BIT(9) | BIT(6) | BIT(2));
	stm32mp1_mode_register_write(priv, 1, mr1);

	/*
	 * 4. For DDR4 only: Perform an MRS command
	 *    (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6]
	 *    to disable RTT_PARK
	 */

	/*
	 * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
	 *    to write to MR2[10:9], to disable RTT_WR
	 *    (and therefore disable dynamic ODT).
	 *    This applies for both DDR3 and DDR4.
	 */
	mr2 &= ~GENMASK(10, 9);
	stm32mp1_mode_register_write(priv, 2, mr2);

	/*
	 * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
	 *    to disable the DLL. The timing of this MRS is automatically
	 *    handled by the uMCTL2.
	 *    a. DDR3: Write to MR1[0]
	 *    b. DDR4: Write to MR1[0]
	 */
	mr1 |= BIT(0);
	stm32mp1_mode_register_write(priv, 1, mr1);

	/*
	 * 7. Put the SDRAM into self-refresh mode by setting
	 *    PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure
	 *    the DDRC has entered self-refresh.
	 */
594
	mmio_setbits_32((uintptr_t)&priv->ctl->pwrctl,
595
			DDRCTRL_PWRCTL_SELFREF_SW);
596
597
598
	VERBOSE("[0x%lx] pwrctl = 0x%x\n",
		(uintptr_t)&priv->ctl->pwrctl,
		mmio_read_32((uintptr_t)&priv->ctl->pwrctl));
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

	/*
	 * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the
	 *    DWC_ddr_umctl2 core is in self-refresh mode.
	 *    Ensure transition to self-refresh was due to software
	 *    by checking that STAT.selfref_type[1:0]=2.
	 */
	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR);

	/*
	 * 9. Set the MSTR.dll_off_mode = 1.
	 *    warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field
	 */
	stm32mp1_start_sw_done(priv->ctl);

614
615
616
617
	mmio_setbits_32((uintptr_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE);
	VERBOSE("[0x%lx] mstr = 0x%x\n",
		(uintptr_t)&priv->ctl->mstr,
		mmio_read_32((uintptr_t)&priv->ctl->mstr));
618
619
620
621
622
623
624
625
626
627
628
629

	stm32mp1_wait_sw_done_ack(priv->ctl);

	/* 10. Change the clock frequency to the desired value. */

	/*
	 * 11. Update any registers which may be required to change for the new
	 *     frequency. This includes static and dynamic registers.
	 *     This includes both uMCTL2 registers and PHY registers.
	 */

	/* Change Bypass Mode Frequency Range */
630
	if (stm32mp_clk_get_rate(DDRPHYC) < 100000000U) {
631
		mmio_clrbits_32((uintptr_t)&priv->phy->dllgcr,
632
633
				DDRPHYC_DLLGCR_BPS200);
	} else {
634
		mmio_setbits_32((uintptr_t)&priv->phy->dllgcr,
635
636
637
				DDRPHYC_DLLGCR_BPS200);
	}

638
	mmio_setbits_32((uintptr_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS);
639

640
	mmio_setbits_32((uintptr_t)&priv->phy->dx0dllcr,
641
			DDRPHYC_DXNDLLCR_DLLDIS);
642
	mmio_setbits_32((uintptr_t)&priv->phy->dx1dllcr,
643
			DDRPHYC_DXNDLLCR_DLLDIS);
644
	mmio_setbits_32((uintptr_t)&priv->phy->dx2dllcr,
645
			DDRPHYC_DXNDLLCR_DLLDIS);
646
	mmio_setbits_32((uintptr_t)&priv->phy->dx3dllcr,
647
648
649
			DDRPHYC_DXNDLLCR_DLLDIS);

	/* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
650
	mmio_clrbits_32((uintptr_t)&priv->ctl->pwrctl,
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
			DDRCTRL_PWRCTL_SELFREF_SW);
	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);

	/*
	 * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command
	 *     at this point.
	 */

	/*
	 * 14. Perform MRS commands as required to re-program timing registers
	 *     in the SDRAM for the new frequency
	 *     (in particular, CL, CWL and WR may need to be changed).
	 */

	/* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
666
667
668
669
	mmio_clrbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
	VERBOSE("[0x%lx] dbg1 = 0x%x\n",
		(uintptr_t)&priv->ctl->dbg1,
		mmio_read_32((uintptr_t)&priv->ctl->dbg1));
670
671
672
673
674
675
}

static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
{
	stm32mp1_start_sw_done(ctl);
	/* Quasi-dynamic register update*/
676
	mmio_setbits_32((uintptr_t)&ctl->rfshctl3,
677
			DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
678
679
	mmio_clrbits_32((uintptr_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
	mmio_clrbits_32((uintptr_t)&ctl->dfimisc,
680
681
682
683
684
685
686
687
688
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	stm32mp1_wait_sw_done_ack(ctl);
}

static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
				     uint32_t rfshctl3, uint32_t pwrctl)
{
	stm32mp1_start_sw_done(ctl);
	if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) {
689
		mmio_clrbits_32((uintptr_t)&ctl->rfshctl3,
690
691
692
				DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
	}
	if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) {
693
		mmio_setbits_32((uintptr_t)&ctl->pwrctl,
694
695
				DDRCTRL_PWRCTL_POWERDOWN_EN);
	}
696
	mmio_setbits_32((uintptr_t)&ctl->dfimisc,
697
698
699
700
701
702
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	stm32mp1_wait_sw_done_ack(ctl);
}

static int board_ddr_power_init(enum ddr_type ddr_type)
{
703
	if (dt_pmic_status() > 0) {
704
705
706
707
708
709
710
711
712
713
		return pmic_ddr_power_init(ddr_type);
	}

	return 0;
}

void stm32mp1_ddr_init(struct ddr_info *priv,
		       struct stm32mp1_ddr_config *config)
{
	uint32_t pir;
714
	int ret = -EINVAL;
715
716
717

	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
		ret = board_ddr_power_init(STM32MP_DDR3);
718
	} else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) != 0U) {
719
		ret = board_ddr_power_init(STM32MP_LPDDR2);
720
721
	} else {
		ERROR("DDR type not supported\n");
722
723
724
725
726
727
728
	}

	if (ret != 0) {
		panic();
	}

	VERBOSE("name = %s\n", config->info.name);
729
	VERBOSE("speed = %d kHz\n", config->info.speed);
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
	VERBOSE("size  = 0x%x\n", config->info.size);

	/* DDR INIT SEQUENCE */

	/*
	 * 1. Program the DWC_ddr_umctl2 registers
	 *     nota: check DFIMISC.dfi_init_complete = 0
	 */

	/* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);

	/* 1.2. start CLOCK */
	if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) {
		panic();
	}

	/* 1.3. deassert reset */
	/* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
	/*
	 * De-assert presetn once the clocks are active
	 * and stable via DDRCAPBRST bit.
	 */
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);

	/* 1.4. wait 128 cycles to permit initialization of end logic */
	udelay(2);
	/* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */

	/* 1.5. initialize registers ddr_umctl2 */
	/* Stop uMCTL2 before PHY is ready */
768
	mmio_clrbits_32((uintptr_t)&priv->ctl->dfimisc,
769
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
770
771
772
	VERBOSE("[0x%lx] dfimisc = 0x%x\n",
		(uintptr_t)&priv->ctl->dfimisc,
		mmio_read_32((uintptr_t)&priv->ctl->dfimisc));
773
774
775
776
777
778
779
780

	set_reg(priv, REG_REG, &config->c_reg);

	/* DDR3 = don't set DLLOFF for init mode */
	if ((config->c_reg.mstr &
	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
		VERBOSE("deactivate DLL OFF in mstr\n");
781
		mmio_clrbits_32((uintptr_t)&priv->ctl->mstr,
782
				DDRCTRL_MSTR_DLL_OFF_MODE);
783
784
785
		VERBOSE("[0x%lx] mstr = 0x%x\n",
			(uintptr_t)&priv->ctl->mstr,
			mmio_read_32((uintptr_t)&priv->ctl->mstr));
786
787
788
789
790
791
	}

	set_reg(priv, REG_TIMING, &config->c_timing);
	set_reg(priv, REG_MAP, &config->c_map);

	/* Skip CTRL init, SDRAM init is done by PHY PUBL */
792
	mmio_clrsetbits_32((uintptr_t)&priv->ctl->init0,
793
794
			   DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
			   DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
795
796
797
	VERBOSE("[0x%lx] init0 = 0x%x\n",
		(uintptr_t)&priv->ctl->init0,
		mmio_read_32((uintptr_t)&priv->ctl->init0));
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

	set_reg(priv, REG_PERF, &config->c_perf);

	/*  2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);

	/*
	 * 3. start PHY init by accessing relevant PUBL registers
	 *    (DXGCR, DCR, PTR*, MR*, DTPR*)
	 */
	set_reg(priv, REGPHY_REG, &config->p_reg);
	set_reg(priv, REGPHY_TIMING, &config->p_timing);
	set_reg(priv, REGPHY_CAL, &config->p_cal);

	/* DDR3 = don't set DLLOFF for init mode */
	if ((config->c_reg.mstr &
	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
		VERBOSE("deactivate DLL OFF in mr1\n");
819
820
821
822
		mmio_clrbits_32((uintptr_t)&priv->phy->mr1, BIT(0));
		VERBOSE("[0x%lx] mr1 = 0x%x\n",
			(uintptr_t)&priv->phy->mr1,
			mmio_read_32((uintptr_t)&priv->phy->mr1));
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
	}

	/*
	 *  4. Monitor PHY init status by polling PUBL register PGSR.IDONE
	 *     Perform DDR PHY DRAM initialization and Gate Training Evaluation
	 */
	stm32mp1_ddrphy_idone_wait(priv->phy);

	/*
	 *  5. Indicate to PUBL that controller performs SDRAM initialization
	 *     by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
	 *     DRAM init is done by PHY, init0.skip_dram.init = 1
	 */

	pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
	      DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;

	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
		pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */
	}

	stm32mp1_ddrphy_init(priv->phy, pir);

	/*
	 *  6. SET DFIMISC.dfi_init_complete_en to 1
	 *  Enable quasi-dynamic register programming.
	 */
	stm32mp1_start_sw_done(priv->ctl);

852
	mmio_setbits_32((uintptr_t)&priv->ctl->dfimisc,
853
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
854
855
856
	VERBOSE("[0x%lx] dfimisc = 0x%x\n",
		(uintptr_t)&priv->ctl->dfimisc,
		mmio_read_32((uintptr_t)&priv->ctl->dfimisc));
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905

	stm32mp1_wait_sw_done_ack(priv->ctl);

	/*
	 *  7. Wait for DWC_ddr_umctl2 to move to normal operation mode
	 *     by monitoring STAT.operating_mode signal
	 */

	/* Wait uMCTL2 ready */
	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);

	/* Switch to DLL OFF mode */
	if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) {
		stm32mp1_ddr3_dll_off(priv);
	}

	VERBOSE("DDR DQS training : ");

	/*
	 *  8. Disable Auto refresh and power down by setting
	 *    - RFSHCTL3.dis_au_refresh = 1
	 *    - PWRCTL.powerdown_en = 0
	 *    - DFIMISC.dfiinit_complete_en = 0
	 */
	stm32mp1_refresh_disable(priv->ctl);

	/*
	 *  9. Program PUBL PGCR to enable refresh during training
	 *     and rank to train
	 *     not done => keep the programed value in PGCR
	 */

	/*
	 * 10. configure PUBL PIR register to specify which training step
	 * to run
	 * Warning : RVTRN  is not supported by this PUBL
	 */
	stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);

	/* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
	stm32mp1_ddrphy_idone_wait(priv->phy);

	/*
	 * 12. set back registers in step 8 to the orginal values if desidered
	 */
	stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
				 config->c_reg.pwrctl);

	/* Enable uMCTL2 AXI port 0 */
906
907
908
909
910
	mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_0,
			DDRCTRL_PCTRL_N_PORT_EN);
	VERBOSE("[0x%lx] pctrl_0 = 0x%x\n",
		(uintptr_t)&priv->ctl->pctrl_0,
		mmio_read_32((uintptr_t)&priv->ctl->pctrl_0));
911
912

	/* Enable uMCTL2 AXI port 1 */
913
914
915
916
917
	mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_1,
			DDRCTRL_PCTRL_N_PORT_EN);
	VERBOSE("[0x%lx] pctrl_1 = 0x%x\n",
		(uintptr_t)&priv->ctl->pctrl_1,
		mmio_read_32((uintptr_t)&priv->ctl->pctrl_1));
918
}