user-guide.md 33.2 KB
Newer Older
1
2
3
4
5
6
ARM Trusted Firmware User Guide
===============================

Contents :

1.  Introduction
7
8
9
10
11
2.  Host machine requirements
3.  Tools
4.  Building the Trusted Firmware
5.  Obtaining the normal world software
6.  Running the software
12
13
14
15


1.  Introduction
----------------
16
17
18
19
20
This document describes how to build ARM Trusted Firmware and run it with a
tested set of other software components using defined configurations on ARM
Fixed Virtual Platform (FVP) models. It is possible to use other software
components, configurations and platforms but that is outside the scope of this
document.
21

22
This document should be used in conjunction with the [Firmware Design].
23
24


25
26
2.  Host machine requirements
-----------------------------
27

28
The minimum recommended machine specification for building the software and
29
30
31
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
32
33
34
35

The software has been tested on Ubuntu 12.04.02 (64-bit).  Packages used
for building the software were installed from that distribution unless
otherwise specified.
36
37


38
39
3.  Tools
---------
40
41
42

The following tools are required to use the ARM Trusted Firmware:

43
*   `git` package to obtain source code
44

45
*   `ia32-libs` package
46

47
48
*   `build-essential` and `uuid-dev` packages for building UEFI and the Firmware
    Image Package(FIP) tool
49

50
*   `bc` and `ncurses-dev` packages for building Linux
51
52
53

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
54
    `gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz` tools are used.
55

56
57
        wget http://releases.linaro.org/13.11/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.8-2013.11_linux.tar.xz
58

59
*   The Device Tree Compiler (DTC) included with Linux kernel 3.13 is used
60
    to build the Flattened Device Tree (FDT) source files (`.dts` files)
61
    provided with this software.
62

63
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.17.
64
65


66
67
4.  Building the Trusted Firmware
---------------------------------
68

69
To build the software for the FVPs, follow these steps:
70

71
1.  Clone the ARM Trusted Firmware repository from GitHub:
72
73
74
75
76
77
78

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

79
80
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
    build:
81

82
83
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
84
        make PLAT=fvp all fip
85

86
87
88
    See the "Summary of build options" for information on available build
    options.

89
    By default this produces a release version of the build. To produce a debug
90
91
    version instead, refer to the "Debugging options" section below. UEFI can be
    used as the BL3-3 image, refer to the "Obtaining the normal world software"
92
93
    section below. By default this won't compile the TSP in, refer to the
    "Building the Test Secure Payload" section below.
94

95
96
97
98
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
99

100
101
102
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
103

104
    ... where `<platform>` currently defaults to `fvp` and `<build-type>` is
105
106
    either `debug` or `release`. A Firmare Image Package(FIP) will be created as
    part of the build. It contains all boot loader images except for `bl1.bin`.
107

108
    *   `build/<platform>/<build-type>/fip.bin`
109

110
111
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
112
113
114
115

4.  Copy the `bl1.bin` and `fip.bin` binary files to the directory from which
    the FVP will be launched. Symbolic links of the same names may be created
    instead.
116

117
118
5.  (Optional) Build products for a specific build variant can be removed using:

119
        make DEBUG=<D> PLAT=fvp clean
120
121
122
123
124
125

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

*   `BL33`: Path to BL33 image in the host file system. This is mandatory for
    `fip` target

*   `CROSS_COMPILE`: Prefix to tool chain binaries. Please refer to examples in
    this document for usage

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
    (release) or 1 (debug) as values. 0 is the default

145
146
147
148
149
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
    1 (do save and restore). 0 is the default. An SPD could set this to 1 if it
    wants the timer registers to be saved and restored

150
151
152
153
154
155
156
157
158
159
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
    platform name must be the name of one of the directories under the `plat/`
    directory other than `common`

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
    SPD source; the directory is expected to contain `spd.mk` makefile

*   `V`: Verbose build. If assigned anything other than 0, the build commands
    are printed. Default is 0
160

161
162
163
164
*   `FVP_GIC_ARCH`: Choice of ARM GIC architecture version used by the FVP port
    for implementing the platform GIC API. This API is used by the interrupt
    management framework. Default is 2 i.e. version 2.0

165
166
167
168
169
*   `IMF_READ_INTERRUPT_ID`: Boolean flag used by the interrupt management
    framework to enable passing of the interrupt id to its handler. The id is
    read using a platform GIC API. `INTR_ID_UNAVAILABLE` is passed instead if
    this option set to 0. Default is 0.

170
171
172
173
174
175
*   `RESET_TO_BL31`: Enable BL3-1 entrypoint as the CPU reset vector in place
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
    entrypoint) or 1 (CPU reset to BL3-1 entrypoint).
    The default value is 0.


176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

Create a Firmware package that contains existing FVP BL2 and BL3-1 images:

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
       --bl2 build/fvp/debug/bl2.bin --bl31 build/fvp/debug/bl31.bin

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
      file: 'build/fvp/debug/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
      file: 'build/fvp/debug/bl31.bin'
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
      --bl2 build/fvp/release/bl2.bin

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
      file: 'build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
232
233
234

To compile a debug version and make the build more verbose use

235
236
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
237
    make PLAT=fvp DEBUG=1 V=1 all fip
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
might need to be recalculated (see the later memory layout section).

Extra debug options can be passed to the build system by setting `CFLAGS`:

253
254
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
255
    BL33=<path-to>/<bl33_image>                               \
256
    make PLAT=fvp DEBUG=1 V=1 all fip
257
258
259


NOTE: The Foundation FVP does not provide a debugger interface.
260
261


262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
### Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL3-1 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
BL3-1 binary. Then to build the TSP image and include it into the FIP use:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
    make PLAT=fvp SPD=tspd all fip

An additional boot loader binary file is created in the `build` directory:

    *   `build/<platform>/<build-type>/bl32.bin`

The Firmware Package contains this new image:

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
      file: './build/fvp/release/bl31.bin'
    - Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
      file: './build/fvp/release/bl32.bin'
    - Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"

On FVP, the TSP binary runs from Trusted SRAM by default. It is also possible
to run it from Trusted DRAM. This is controlled by the build configuration
`TSP_RAM_LOCATION`:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
    make PLAT=fvp SPD=tspd TSP_RAM_LOCATION=tdram all fip


304
### Checking source code style
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
the project Makefile contains two targets, which both utilise the checkpatch.pl
script that ships with the Linux source tree.

To check the entire source tree, you must first download a copy of checkpatch.pl
(or the full Linux source), set the CHECKPATCH environment variable to point to
the script and build the target checkcodebase:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkcodebase

To just check the style on the files that differ between your local branch and
the remote master, use:

    make CHECKPATCH=../linux/scripts/checkpatch.pl checkpatch

If you wish to check your patch against something other than the remote master,
set the BASE_COMMIT variable to your desired branch.  By default, BASE_COMMIT
is set to 'origin/master'.


327
328
5.  Obtaining the normal world software
---------------------------------------
329

330
### Obtaining EDK2
331

332
333
334
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
335

336
337
Clone the [EDK2 source code][EDK2] from GitHub. This version supports the Base
and Foundation FVPs:
338
339
340

    git clone -n https://github.com/tianocore/edk2.git
    cd edk2
341
    git checkout 129ff94661bd3a6c759b1e154c143d0136bedc7d
342
343


344
345
To build the software to be compatible with Foundation and Base FVPs, follow
these steps:
346

347
1.  Copy build config templates to local workspace
348

349
        # in edk2/
350
        . edksetup.sh
351

352
2.  Build the EDK2 host tools
353

354
355
        make -C BaseTools clean
        make -C BaseTools
356

357
3.  Build the EDK2 software
358

359
        CROSS_COMPILE=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
360
361
362
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"
363
364
365
366
367
368

    The EDK2 binary for use with the ARM Trusted Firmware can then be found
    here:

        Build/ArmVExpress-FVP-AArch64/DEBUG_ARMGCC/FV/FVP_AARCH64_EFI.fd

369
370
371
372
    This will build EDK2 for the default settings as used by the FVPs. The EDK2
    binary `FVP_AARCH64_EFI.fd` should be specified as `BL33` in in the `make`
    command line when building the Trusted Firmware. See the "Building the
    Trusted Firmware" section above.
373

374
375
376
4.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
377

378
379
380
5.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
381

382
383
384
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
385

386
    Then rebuild EDK2 as described in step 3, using the following flag:
387

388
389
390
391
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
392

393

394
### Obtaining a Linux kernel
395

396
397
The software has been verified using a Linux kernel based on version 3.13.
Patches have been applied in order to enable the CPU idle feature.
398

399
Preparing a Linux kernel for use on the FVPs with CPU idle support can
400
401
402
403
404
405
be done as follows (GICv2 support only):

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

406
407
408
    Not all CPU idle features are included in the mainline kernel yet. To
    use these, add the patches from Sudeep Holla's kernel, based on
    Linux 3.13:
409
410

        cd linux
411
412
        git remote add -f --tags arm64_idle_genfw_ref git://linux-arm.org/linux-skn.git
        git checkout -b cpuidle arm64_idle_genfw_ref
413
414
415
416
417
418
419

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

420
        # Enable CPU idle
421
        make ARCH=arm64 menuconfig
422
423
        # CPU Power Management ---> CPU Idle ---> [*] CPU idle PM support
        # CPU Power Management ---> CPU Idle ---> ARM64 CPU Idle Drivers ---> [*] Generic ARM64 CPU idle Driver
424

425
426
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
427
428

3.  Copy the Linux image `arch/arm64/boot/Image` to the working directory from
429
    where the FVP is launched. Alternatively a symbolic link may be used.
430

431
### Obtaining the Flattened Device Trees
432
433

Depending on the FVP configuration and Linux configuration used, different
434
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
435
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
436
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
437
and MMC support, and has only one CPU cluster.
438
439
440
441

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
442
    Base memory map configuration.
443
444
445

*   `fvp-base-gicv2legacy-psci.dtb`

446
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
447
448
449

*   `fvp-base-gicv3-psci.dtb`

450
451
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


467
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
468
is launched. Alternatively a symbolic link may be used.
469

470
### Obtaining a root file-system
471
472
473
474
475

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

476
#### Prepare VirtioBlock
477
478
479
480
481
482
483

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

    NOTE: The unpacked disk image grows to 2 GiB in size.

484
485
        wget http://releases.linaro.org/14.01/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.8_20140126-596.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.8_20140126-596.img.gz
486
487
488
489
490
491
492
493
494

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
495
496
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
497
498
499
500
501

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

502
    1.  In EDK2, edit the following file:
503
504
505
506
507
508
509
510
511
512
513
514
515
516

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
517
    passing it the correct command line option. In the FVPs the following
518
519
520
521
522
523
    option should be provided in addition to the ones described in the
    "Running the software" section below.

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

524
    On the Base FVPs:
525
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
526

527
    On the Foundation FVP:
528
        --block-device="<path-to>/<file-system-image>"
529
530


531
532
533
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

534
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
535
536
537
538
539

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

540
#### Prepare RAM-disk
541

542
To prepare a RAM-disk root file-system, do the following:
543
544
545

1.  Download the file-system image:

546
        wget http://releases.linaro.org/14.01/openembedded/aarch64/linaro-image-lamp-genericarmv8-20140127-635.rootfs.tar.gz
547
548
549
550
551
552

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
553
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20140127-635.rootfs.tar.gz | cpio -id"
554
555
556
557
558
559
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
560
    launched from. Alternatively a symbolic link may be used.
561
562


563
564
6.  Running the software
------------------------
565

566
This version of the ARM Trusted Firmware has been tested on the following ARM
567
568
FVPs (64-bit versions only).

569
*   `Foundation_v8` (Version 2.0, Build 0.8.5206)
570
571
572
*   `FVP_Base_AEMv8A-AEMv8A` (Version 5.4, Build 0.8.5405)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 5.4, Build 0.8.5405)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 5.4, Build 0.8.5405)
573
574
575

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
576
577
578
579
580

Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

581
582
583
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

584
585

### Running on the Foundation FVP with reset to BL1 entrypoint
586
587
588
589
590
591
592

The following `Foundation_v8` parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

593
594
595
596
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

597
    <path-to>/Foundation_v8                   \
598
599
600
601
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --gicv3                                   \
602
603
604
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
605

606
607
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
608
609
610
611
612
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

613
### Notes regarding Base FVP configuration options
614

615
616
617
1. The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
section above).
618

619
2. Using `cache_state_modelled=1` makes booting very slow. The software will
620
621
622
still work (and run much faster) without this option but this will hide any
cache maintenance defects in the software.

623
3. Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
624
if a Linux RAM-disk file-system is used (see the "Obtaining a root file-system"
625
626
section above).

627
628
629
630
631
632
633
634
635
636
637
638
639
4. Setting the `-C bp.secure_memory` parameter to `1` is only supported on
Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
instructs the FVP to provide some helpful information if a secure memory
violation occurs.

5. The `--data="<path-to><bl31/bl32/bl33-binary>"@base address of binaries`
parameter is used to load bootloader images in the Base FVP memory (see the
"Building the Trusted Firmware" section above). The base address used to
load the binaries with --data should match the image base addresses in
platform_def.h used while linking the images.
BL3-2 image is only needed if BL3-1 has been built to expect a secure-EL1
payload.
640

641
642
643
644
645
646
647
648

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
649

650
651
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
652
653
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
654
655
656
657
658
659
660
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
661

662
663
664
665
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
666
667
668
669

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

670
671
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
672
673
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
674
675
676
677
678
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
679

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
### Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

NOTE: Uses the `-c clusterX.cpuX.RVBAR=@base address of BL3-1` where X is
the cluster number in clusterX and cpu number in cpuX is used to set the reset
vector for each core.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
    -C cluster0.cpu0.RVBAR=0x04006000                            \
    -C cluster0.cpu1.RVBAR=0x04006000                            \
    -C cluster0.cpu2.RVBAR=0x04006000                            \
    -C cluster0.cpu3.RVBAR=0x04006000                            \
    -C cluster1.cpu0.RVBAR=0x04006000                            \
    -C cluster1.cpu1.RVBAR=0x04006000                            \
    -C cluster1.cpu2.RVBAR=0x04006000                            \
    -C cluster1.cpu3.RVBAR=0x04006000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04006000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04024000    \
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

### Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

NOTE: Uses the `-c clusterX.cpuX.RVBARADDR=@base address of BL3-1` where X is
the cluster number in clusterX and cpu number in cpuX is used to set the reset
vector for each core.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
    -C cluster0.cpu0.RVBARADDR=0x04006000                        \
    -C cluster0.cpu1.RVBARADDR=0x04006000                        \
    -C cluster0.cpu2.RVBARADDR=0x04006000                        \
    -C cluster0.cpu3.RVBARADDR=0x04006000                        \
    -C cluster1.cpu0.RVBARADDR=0x04006000                        \
    -C cluster1.cpu1.RVBARADDR=0x04006000                        \
    -C cluster1.cpu2.RVBARADDR=0x04006000                        \
    -C cluster1.cpu3.RVBARADDR=0x04006000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04006000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04024000    \
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

744
745
746
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
747
748
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
749
750
751
752
753
754

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

755
The AEMv8 Base FVP can be configured to support GICv2 at addresses
756
757
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
758
759
760
761
762
763

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

764
765
766
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
767
768
769

*   `SYS_ID.Build[15:12]`

770
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
771
    default value on the Base FVPs.
772
773
774

*   `SYS_ID.Build[15:12]`

775
776
777
778
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
779

780
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
781
BL3-3 images should be used.
782

783
784
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

785
786
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
787

788
789
790
791
792
793
794
795
    <path-to>/Foundation_v8                   \
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
796
797
798

Explicit configuration of the `SYS_ID` register is not required.

799
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
800

801
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
802
803
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
804
805
806
807
808
809
810
811
812
813
814
815
816
817

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
818
    -C bp.variant=0x0
819

820
821
822
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
823
824
825
826


- - - - - - - - - - - - - - - - - - - - - - - - - -

827
_Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved._
828
829


830
[Firmware Design]:  ./firmware-design.md
831

832
[ARM FVP website]:  http://www.arm.com/fvp
833
[Linaro Toolchain]: http://releases.linaro.org/13.09/components/toolchain/binaries/
834
[EDK2]:             http://github.com/tianocore/edk2
835
[DS-5]:             http://www.arm.com/products/tools/software-tools/ds-5/index.php