psci_common.c 29.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <platform.h>
#include <string.h>
#include "psci_private.h"

/*
 * SPD power management operations, expected to be supplied by the registered
 * SPD on successful SP initialization
 */
const spd_pm_ops_t *psci_spd_pm;

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
 * PSCI requested local power state map. This array is used to store the local
 * power states requested by a CPU for power levels from level 1 to
 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
 * CPU are the same.
 *
 * During state coordination, the platform is passed an array containing the
 * local states requested for a particular non cpu power domain by each cpu
 * within the domain.
 *
 * TODO: Dense packing of the requested states will cause cache thrashing
 * when multiple power domains write to it. If we allocate the requested
 * states at each power level in a cache-line aligned per-domain memory,
 * the cache thrashing can be avoided.
 */
static plat_local_state_t
	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];


68
/*******************************************************************************
69
70
71
72
73
 * Arrays that hold the platform's power domain tree information for state
 * management of power domains.
 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
 * which is an ancestor of a CPU power domain.
 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
74
 ******************************************************************************/
75
non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
76
77
78
79
80
#if USE_COHERENT_MEM
__attribute__ ((section("tzfw_coherent_mem")))
#endif
;

81
82
cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];

83
84
85
/*******************************************************************************
 * Pointer to functions exported by the platform to complete power mgmt. ops
 ******************************************************************************/
86
const plat_psci_ops_t *psci_plat_pm_ops;
87

88
/******************************************************************************
89
 * Check that the maximum power level supported by the platform makes sense
90
 *****************************************************************************/
91
92
CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
		PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
93
		assert_platform_max_pwrlvl_check);
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
 * The plat_local_state used by the platform is one of these types: RUN,
 * RETENTION and OFF. The platform can define further sub-states for each type
 * apart from RUN. This categorization is done to verify the sanity of the
 * psci_power_state passed by the platform and to print debug information. The
 * categorization is done on the basis of the following conditions:
 *
 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
 *
 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
 *    STATE_TYPE_RETN.
 *
 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
 *    STATE_TYPE_OFF.
 */
typedef enum plat_local_state_type {
	STATE_TYPE_RUN = 0,
	STATE_TYPE_RETN,
	STATE_TYPE_OFF
} plat_local_state_type_t;

/* The macro used to categorize plat_local_state. */
#define find_local_state_type(plat_local_state)					\
		((plat_local_state) ? ((plat_local_state > PLAT_MAX_RET_STATE)	\
		? STATE_TYPE_OFF : STATE_TYPE_RETN)				\
		: STATE_TYPE_RUN)

/******************************************************************************
 * Check that the maximum retention level supported by the platform is less
 * than the maximum off level.
 *****************************************************************************/
CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \
		assert_platform_max_off_and_retn_state_check);

/******************************************************************************
 * This function ensures that the power state parameter in a CPU_SUSPEND request
 * is valid. If so, it returns the requested states for each power level.
 *****************************************************************************/
int psci_validate_power_state(unsigned int power_state,
			      psci_power_state_t *state_info)
135
{
136
137
138
	/* Check SBZ bits in power state are zero */
	if (psci_check_power_state(power_state))
		return PSCI_E_INVALID_PARAMS;
139

140
	assert(psci_plat_pm_ops->validate_power_state);
141

142
143
144
	/* Validate the power_state using platform pm_ops */
	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
}
145

146
147
148
149
150
151
152
153
154
155
156
/******************************************************************************
 * This function retrieves the `psci_power_state_t` for system suspend from
 * the platform.
 *****************************************************************************/
void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
{
	/*
	 * Assert that the required pm_ops hook is implemented to ensure that
	 * the capability detected during psci_setup() is valid.
	 */
	assert(psci_plat_pm_ops->get_sys_suspend_power_state);
157

158
159
160
161
	/*
	 * Query the platform for the power_state required for system suspend
	 */
	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
162
163
164
165
166
167
168
169
170
171
}

/*******************************************************************************
 * This function verifies that the all the other cores in the system have been
 * turned OFF and the current CPU is the last running CPU in the system.
 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
 * otherwise.
 ******************************************************************************/
unsigned int psci_is_last_on_cpu(void)
{
172
	unsigned int cpu_idx, my_idx = plat_my_core_pos();
173

174
175
176
	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
		if (cpu_idx == my_idx) {
			assert(psci_get_aff_info_state() == AFF_STATE_ON);
177
178
179
			continue;
		}

180
		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
181
182
183
184
185
186
187
			return 0;
	}

	return 1;
}

/*******************************************************************************
188
 * Routine to return the maximum power level to traverse to after a cpu has
189
190
191
 * been physically powered up. It is expected to be called immediately after
 * reset from assembler code.
 ******************************************************************************/
192
static int get_power_on_target_pwrlvl(void)
193
{
194
	int pwrlvl;
195
196

	/*
197
	 * Assume that this cpu was suspended and retrieve its target power
198
	 * level. If it is invalid then it could only have been turned off
199
	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
200
201
	 * cpu can be turned off to.
	 */
202
203
204
205
	pwrlvl = psci_get_suspend_pwrlvl();
	if (pwrlvl == PSCI_INVALID_DATA)
		pwrlvl = PLAT_MAX_PWR_LVL;
	return pwrlvl;
206
207
}

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/******************************************************************************
 * Helper function to update the requested local power state array. This array
 * does not store the requested state for the CPU power level. Hence an
 * assertion is added to prevent us from accessing the wrong index.
 *****************************************************************************/
static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
					 unsigned int cpu_idx,
					 plat_local_state_t req_pwr_state)
{
	assert(pwrlvl > PSCI_CPU_PWR_LVL);
	psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state;
}

/******************************************************************************
 * This function initializes the psci_req_local_pwr_states.
 *****************************************************************************/
void psci_init_req_local_pwr_states(void)
{
	/* Initialize the requested state of all non CPU power domains as OFF */
	memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE,
			sizeof(psci_req_local_pwr_states));
}

/******************************************************************************
 * Helper function to return a reference to an array containing the local power
 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
 * array will be the number of cpu power domains of which this power domain is
 * an ancestor. These requested states will be used to determine a suitable
 * target state for this power domain during psci state coordination. An
 * assertion is added to prevent us from accessing the CPU power level.
 *****************************************************************************/
static plat_local_state_t *psci_get_req_local_pwr_states(int pwrlvl,
							 int cpu_idx)
{
	assert(pwrlvl > PSCI_CPU_PWR_LVL);

	return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
}

/******************************************************************************
 * Helper function to return the current local power state of each power domain
 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
 * function will be called after a cpu is powered on to find the local state
 * each power domain has emerged from.
 *****************************************************************************/
static void psci_get_target_local_pwr_states(uint32_t end_pwrlvl,
					     psci_power_state_t *target_state)
{
	int lvl;
	unsigned int parent_idx;
	plat_local_state_t *pd_state = target_state->pwr_domain_state;

	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;

	/* Copy the local power state from node to state_info */
	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
#if !USE_COHERENT_MEM
		/*
		 * If using normal memory for psci_non_cpu_pd_nodes, we need
		 * to flush before reading the local power state as another
		 * cpu in the same power domain could have updated it and this
		 * code runs before caches are enabled.
		 */
		flush_dcache_range(
			(uint64_t)&psci_non_cpu_pd_nodes[parent_idx],
				sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
		pd_state[lvl] =	psci_non_cpu_pd_nodes[parent_idx].local_state;
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}

	/* Set the the higher levels to RUN */
	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
}

/******************************************************************************
 * Helper function to set the target local power state that each power domain
 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
 * enter. This function will be called after coordination of requested power
 * states has been done for each power level.
 *****************************************************************************/
static void psci_set_target_local_pwr_states(uint32_t end_pwrlvl,
					const psci_power_state_t *target_state)
{
	int lvl;
	unsigned int parent_idx;
	const plat_local_state_t *pd_state = target_state->pwr_domain_state;

	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);

	/*
	 * Need to flush as local_state will be accessed with Data Cache
	 * disabled during power on
	 */
	flush_cpu_data(psci_svc_cpu_data.local_state);

	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;

	/* Copy the local_state from state_info */
	for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
		psci_non_cpu_pd_nodes[parent_idx].local_state =	pd_state[lvl];
#if !USE_COHERENT_MEM
		flush_dcache_range(
			(uint64_t)&psci_non_cpu_pd_nodes[parent_idx],
			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}
}


321
/*******************************************************************************
322
 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
323
 ******************************************************************************/
324
325
326
void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
				      int end_lvl,
				      unsigned int node_index[])
327
{
328
329
	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
	int i;
330

331
332
333
334
	for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
		*node_index++ = parent_node;
		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
	}
335
336
}

337
338
339
340
341
342
/******************************************************************************
 * This function is invoked post CPU power up and initialization. It sets the
 * affinity info state, target power state and requested power state for the
 * current CPU and all its ancestor power domains to RUN.
 *****************************************************************************/
void psci_set_pwr_domains_to_run(uint32_t end_pwrlvl)
343
{
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
	int lvl;
	unsigned int parent_idx, cpu_idx = plat_my_core_pos();
	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;

	/* Reset the local_state to RUN for the non cpu power domains. */
	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
		psci_non_cpu_pd_nodes[parent_idx].local_state =
				PSCI_LOCAL_STATE_RUN;
#if !USE_COHERENT_MEM
		flush_dcache_range(
				(uint64_t)&psci_non_cpu_pd_nodes[parent_idx],
				sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
		psci_set_req_local_pwr_state(lvl,
					     cpu_idx,
					     PSCI_LOCAL_STATE_RUN);
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}

	/* Set the affinity info state to ON */
	psci_set_aff_info_state(AFF_STATE_ON);

	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
	flush_cpu_data(psci_svc_cpu_data);
}

/******************************************************************************
 * This function is passed the local power states requested for each power
 * domain (state_info) between the current CPU domain and its ancestors until
 * the target power level (end_pwrlvl). It updates the array of requested power
 * states with this information.
 *
 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
 * retrieves the states requested by all the cpus of which the power domain at
 * that level is an ancestor. It passes this information to the platform to
 * coordinate and return the target power state. If the target state for a level
 * is RUN then subsequent levels are not considered. At the CPU level, state
 * coordination is not required. Hence, the requested and the target states are
 * the same.
 *
 * The 'state_info' is updated with the target state for each level between the
 * CPU and the 'end_pwrlvl' and returned to the caller.
 *
 * This function will only be invoked with data cache enabled and while
 * powering down a core.
 *****************************************************************************/
void psci_do_state_coordination(int end_pwrlvl, psci_power_state_t *state_info)
{
	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
	unsigned int start_idx, ncpus;
	plat_local_state_t target_state, *req_states;

	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;

	/* For level 0, the requested state will be equivalent
	   to target state */
	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {

		/* First update the requested power state */
		psci_set_req_local_pwr_state(lvl, cpu_idx,
					     state_info->pwr_domain_state[lvl]);

		/* Get the requested power states for this power level */
		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
		req_states = psci_get_req_local_pwr_states(lvl, start_idx);

		/*
		 * Let the platform coordinate amongst the requested states at
		 * this power level and return the target local power state.
		 */
		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
		target_state = plat_get_target_pwr_state(lvl,
							 req_states,
							 ncpus);

		state_info->pwr_domain_state[lvl] = target_state;

		/* Break early if the negotiated target power state is RUN */
		if (is_local_state_run(state_info->pwr_domain_state[lvl]))
			break;
424

425
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
426
	}
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

	/*
	 * This is for cases when we break out of the above loop early because
	 * the target power state is RUN at a power level < end_pwlvl.
	 * We update the requested power state from state_info and then
	 * set the target state as RUN.
	 */
	for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) {
		psci_set_req_local_pwr_state(lvl, cpu_idx,
					     state_info->pwr_domain_state[lvl]);
		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;

	}

	/* Update the target state in the power domain nodes */
	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
}

/******************************************************************************
 * This function validates a suspend request by making sure that if a standby
 * state is requested then no power level is turned off and the highest power
 * level is placed in a standby/retention state.
 *
 * It also ensures that the state level X will enter is not shallower than the
 * state level X + 1 will enter.
 *
 * This validation will be enabled only for DEBUG builds as the platform is
 * expected to perform these validations as well.
 *****************************************************************************/
int psci_validate_suspend_req(const psci_power_state_t *state_info,
			      unsigned int is_power_down_state)
{
	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
	plat_local_state_t state;
	plat_local_state_type_t req_state_type, deepest_state_type;
	int i;

	/* Find the target suspend power level */
	target_lvl = psci_find_target_suspend_lvl(state_info);
	if (target_lvl == PSCI_INVALID_DATA)
		return PSCI_E_INVALID_PARAMS;

	/* All power domain levels are in a RUN state to begin with */
	deepest_state_type = STATE_TYPE_RUN;

	for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) {
		state = state_info->pwr_domain_state[i];
		req_state_type = find_local_state_type(state);

		/*
		 * While traversing from the highest power level to the lowest,
		 * the state requested for lower levels has to be the same or
		 * deeper i.e. equal to or greater than the state at the higher
		 * levels. If this condition is true, then the requested state
		 * becomes the deepest state encountered so far.
		 */
		if (req_state_type < deepest_state_type)
			return PSCI_E_INVALID_PARAMS;
		deepest_state_type = req_state_type;
	}

	/* Find the highest off power level */
	max_off_lvl = psci_find_max_off_lvl(state_info);

	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
	max_retn_lvl = PSCI_INVALID_DATA;
	if (target_lvl != max_off_lvl)
		max_retn_lvl = target_lvl;

	/*
	 * If this is not a request for a power down state then max off level
	 * has to be invalid and max retention level has to be a valid power
	 * level.
	 */
	if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_DATA ||
				    max_retn_lvl == PSCI_INVALID_DATA))
		return PSCI_E_INVALID_PARAMS;

	return PSCI_E_SUCCESS;
}

/******************************************************************************
 * This function finds the highest power level which will be powered down
 * amongst all the power levels specified in the 'state_info' structure
 *****************************************************************************/
unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
{
	int i;

	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
		if (is_local_state_off(state_info->pwr_domain_state[i]))
			return i;
	}

	return PSCI_INVALID_DATA;
}

/******************************************************************************
 * This functions finds the level of the highest power domain which will be
 * placed in a low power state during a suspend operation.
 *****************************************************************************/
unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
{
	int i;

	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
		if (!is_local_state_run(state_info->pwr_domain_state[i]))
			return i;
	}

	return PSCI_INVALID_DATA;
538
539
540
}

/*******************************************************************************
541
542
543
 * This function is passed a cpu_index and the highest level in the topology
 * tree that the operation should be applied to. It picks up locks in order of
 * increasing power domain level in the range specified.
544
 ******************************************************************************/
545
void psci_acquire_pwr_domain_locks(int end_pwrlvl, unsigned int cpu_idx)
546
{
547
	unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
548
549
	int level;

550
551
552
553
	/* No locking required for level 0. Hence start locking from level 1 */
	for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
554
555
556
557
	}
}

/*******************************************************************************
558
559
560
 * This function is passed a cpu_index and the highest level in the topology
 * tree that the operation should be applied to. It releases the locks in order
 * of decreasing power domain level in the range specified.
561
 ******************************************************************************/
562
void psci_release_pwr_domain_locks(int end_pwrlvl, unsigned int cpu_idx)
563
{
564
	unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
565
566
	int level;

567
568
	/* Get the parent nodes */
	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
569

570
571
572
573
	/* Unlock top down. No unlocking required for level 0. */
	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
		parent_idx = parent_nodes[level - 1];
		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
574
575
576
577
	}
}

/*******************************************************************************
578
 * Simple routine to determine whether a mpidr is valid or not.
579
 ******************************************************************************/
580
int psci_validate_mpidr(unsigned long mpidr)
581
{
582
	if (plat_core_pos_by_mpidr(mpidr) < 0)
583
		return PSCI_E_INVALID_PARAMS;
584
585

	return PSCI_E_SUCCESS;
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
}

/*******************************************************************************
 * This function determines the full entrypoint information for the requested
 * PSCI entrypoint on power on/resume and returns it.
 ******************************************************************************/
int psci_get_ns_ep_info(entry_point_info_t *ep,
		       uint64_t entrypoint, uint64_t context_id)
{
	uint32_t ep_attr, mode, sctlr, daif, ee;
	uint32_t ns_scr_el3 = read_scr_el3();
	uint32_t ns_sctlr_el1 = read_sctlr_el1();

	sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
	ee = 0;

	ep_attr = NON_SECURE | EP_ST_DISABLE;
	if (sctlr & SCTLR_EE_BIT) {
		ep_attr |= EP_EE_BIG;
		ee = 1;
	}
	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);

	ep->pc = entrypoint;
	memset(&ep->args, 0, sizeof(ep->args));
	ep->args.arg0 = context_id;

	/*
	 * Figure out whether the cpu enters the non-secure address space
	 * in aarch32 or aarch64
	 */
	if (ns_scr_el3 & SCR_RW_BIT) {

		/*
		 * Check whether a Thumb entry point has been provided for an
		 * aarch64 EL
		 */
		if (entrypoint & 0x1)
			return PSCI_E_INVALID_PARAMS;

		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;

		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	} else {

		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;

		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;

		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
	}

	return PSCI_E_SUCCESS;
}

/*******************************************************************************
 * Generic handler which is called when a cpu is physically powered on. It
647
 * traverses the node information and finds the highest power level powered
648
 * off and performs generic, architectural, platform setup and state management
649
 * to power on that power level and power levels below it.
650
651
652
 * e.g. For a cpu that's been powered on, it will call the platform specific
 * code to enable the gic cpu interface and for a cluster it will enable
 * coherency at the interconnect level in addition to gic cpu interface.
653
 ******************************************************************************/
654
void psci_power_up_finish(void)
655
{
656
	unsigned int cpu_idx = plat_my_core_pos();
657
	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
	int end_pwrlvl;

	/*
	 * Verify that we have been explicitly turned ON or resumed from
	 * suspend.
	 */
	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
		ERROR("Unexpected affinity info state");
		panic();
	}

	/*
	 * Get the maximum power domain level to traverse to after this cpu
	 * has been physically powered up.
	 */
	end_pwrlvl = get_power_on_target_pwrlvl();
674
675

	/*
676
677
678
	 * This function acquires the lock corresponding to each power level so
	 * that by the time all locks are taken, the system topology is snapshot
	 * and state management can be done safely.
679
	 */
680
681
	psci_acquire_pwr_domain_locks(end_pwrlvl,
				      cpu_idx);
682

683
	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
684

685
	/*
686
687
688
689
690
691
692
693
694
695
	 * This CPU could be resuming from suspend or it could have just been
	 * turned on. To distinguish between these 2 cases, we examine the
	 * affinity state of the CPU:
	 *  - If the affinity state is ON_PENDING then it has just been
	 *    turned on.
	 *  - Else it is resuming from suspend.
	 *
	 * Depending on the type of warm reset identified, choose the right set
	 * of power management handler and perform the generic, architecture
	 * and platform specific handling.
696
	 */
697
698
699
700
	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
		psci_cpu_on_finish(cpu_idx, &state_info);
	else
		psci_cpu_suspend_finish(cpu_idx, &state_info);
701
702

	/*
703
704
	 * Set the requested and target state of this CPU and all the higher
	 * power domains which are ancestors of this CPU to run.
705
	 */
706
	psci_set_pwr_domains_to_run(end_pwrlvl);
707
708

	/*
709
	 * This loop releases the lock corresponding to each power level
710
711
	 * in the reverse order to which they were acquired.
	 */
712
713
	psci_release_pwr_domain_locks(end_pwrlvl,
				      cpu_idx);
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
}

/*******************************************************************************
 * This function initializes the set of hooks that PSCI invokes as part of power
 * management operation. The power management hooks are expected to be provided
 * by the SPD, after it finishes all its initialization
 ******************************************************************************/
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
{
	assert(pm);
	psci_spd_pm = pm;

	if (pm->svc_migrate)
		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);

	if (pm->svc_migrate_info)
		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
				| define_psci_cap(PSCI_MIG_INFO_TYPE);
}

/*******************************************************************************
 * This function invokes the migrate info hook in the spd_pm_ops. It performs
 * the necessary return value validation. If the Secure Payload is UP and
 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
 * is resident through the mpidr parameter. Else the value of the parameter on
 * return is undefined.
 ******************************************************************************/
int psci_spd_migrate_info(uint64_t *mpidr)
{
	int rc;

	if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
		return PSCI_E_NOT_SUPPORTED;

	rc = psci_spd_pm->svc_migrate_info(mpidr);

	assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
		|| rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);

	return rc;
}


/*******************************************************************************
758
 * This function prints the state of all power domains present in the
759
760
 * system
 ******************************************************************************/
761
void psci_print_power_domain_map(void)
762
763
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
764
765
766
	unsigned int idx;
	plat_local_state_t state;
	plat_local_state_type_t state_type;
767

768
	/* This array maps to the PSCI_STATE_X definitions in psci.h */
769
	static const char *psci_state_type_str[] = {
770
		"ON",
771
		"RETENTION",
772
773
774
		"OFF",
	};

775
	INFO("PSCI Power Domain Map:\n");
776
777
778
779
780
781
	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
							idx++) {
		state_type = find_local_state_type(
				psci_non_cpu_pd_nodes[idx].local_state);
		INFO("  Domain Node : Level %u, parent_node %d,"
				" State %s (0x%x)\n",
782
783
				psci_non_cpu_pd_nodes[idx].level,
				psci_non_cpu_pd_nodes[idx].parent_node,
784
785
				psci_state_type_str[state_type],
				psci_non_cpu_pd_nodes[idx].local_state);
786
787
788
	}

	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
789
790
791
792
		state = psci_get_cpu_local_state_by_idx(idx);
		state_type = find_local_state_type(state);
		INFO("  CPU Node : MPID 0x%lx, parent_node %d,"
				" State %s (0x%x)\n",
793
794
				psci_cpu_pd_nodes[idx].mpidr,
				psci_cpu_pd_nodes[idx].parent_node,
795
796
				psci_state_type_str[state_type],
				psci_get_cpu_local_state_by_idx(idx));
797
798
799
	}
#endif
}