bl_common.c 18.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <semihosting.h>
#include <bl_common.h>
40
41
#include <io_storage.h>
#include <debug.h>
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

unsigned long page_align(unsigned long value, unsigned dir)
{
	unsigned long page_size = 1 << FOUR_KB_SHIFT;

	/* Round up the limit to the next page boundary */
	if (value & (page_size - 1)) {
		value &= ~(page_size - 1);
		if (dir == UP)
			value += page_size;
	}

	return value;
}

static inline unsigned int is_page_aligned (unsigned long addr) {
	const unsigned long page_size = 1 << FOUR_KB_SHIFT;

	return (addr & (page_size - 1)) == 0;
}

void change_security_state(unsigned int target_security_state)
{
	unsigned long scr = read_scr();

	if (target_security_state == SECURE)
		scr &= ~SCR_NS_BIT;
	else if (target_security_state == NON_SECURE)
		scr |= SCR_NS_BIT;
	else
		assert(0);

	write_scr(scr);
}

77
void __dead2 drop_el(aapcs64_params_t *args,
78
79
		     unsigned long spsr,
		     unsigned long entrypoint)
80
{
81
82
	write_spsr_el3(spsr);
	write_elr_el3(entrypoint);
83
84
85
86
87
88
89
90
91
92
	eret(args->arg0,
	     args->arg1,
	     args->arg2,
	     args->arg3,
	     args->arg4,
	     args->arg5,
	     args->arg6,
	     args->arg7);
}

93
void __dead2 raise_el(aapcs64_params_t *args)
94
{
95
96
97
98
99
100
101
102
	smc(args->arg0,
	    args->arg1,
	    args->arg2,
	    args->arg3,
	    args->arg4,
	    args->arg5,
	    args->arg6,
	    args->arg7);
103
104
105
106
107
108
109
}

/*
 * TODO: If we are not EL3 then currently we only issue an SMC.
 * Add support for dropping into EL0 etc. Consider adding support
 * for switching from S-EL1 to S-EL0/1 etc.
 */
110
void __dead2 change_el(el_change_info_t *info)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
{
	unsigned long current_el = read_current_el();

	if (GET_EL(current_el) == MODE_EL3) {
		/*
		 * We can go anywhere from EL3. So find where.
		 * TODO: Lots to do if we are going non-secure.
		 * Flip the NS bit. Restore NS registers etc.
		 * Just doing the bare minimal for now.
		 */

		if (info->security_state == NON_SECURE)
			change_security_state(info->security_state);

125
		drop_el(&info->args, info->spsr, info->entrypoint);
126
	} else
127
		raise_el(&info->args);
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
}

/* TODO: add a parameter for DAIF. not needed right now */
unsigned long make_spsr(unsigned long target_el,
			unsigned long target_sp,
			unsigned long target_rw)
{
	unsigned long spsr;

	/* Disable all exceptions & setup the EL */
	spsr = (DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT | DAIF_DBG_BIT)
		<< PSR_DAIF_SHIFT;
	spsr |= PSR_MODE(target_rw, target_el, target_sp);

	return spsr;
}

/*******************************************************************************
 * The next two functions are the weak definitions. Platform specific
 * code can override them if it wishes to.
 ******************************************************************************/

/*******************************************************************************
 * Function that takes a memory layout into which BL31 has been either top or
 * bottom loaded. Using this information, it populates bl31_mem_layout to tell
 * BL31 how much memory it has access to and how much is available for use. It
 * does not need the address where BL31 has been loaded as BL31 will reclaim
 * all the memory used by BL2.
 * TODO: Revisit if this and init_bl2_mem_layout can be replaced by a single
 * routine.
 ******************************************************************************/
159
160
void init_bl31_mem_layout(const meminfo_t *bl2_mem_layout,
			  meminfo_t *bl31_mem_layout,
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
			  unsigned int load_type)
{
	if (load_type == BOT_LOAD) {
		/*
		 * ------------                             ^
		 * |   BL2    |                             |
		 * |----------|                 ^           |  BL2
		 * |          |                 | BL2 free  |  total
		 * |          |                 |   size    |  size
		 * |----------| BL2 free base   v           |
		 * |   BL31   |                             |
		 * ------------ BL2 total base              v
		 */
		unsigned long bl31_size;

		bl31_mem_layout->free_base = bl2_mem_layout->free_base;

		bl31_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
		bl31_mem_layout->free_size = bl2_mem_layout->total_size - bl31_size;
	} else {
		/*
		 * ------------                             ^
		 * |   BL31   |                             |
		 * |----------|                 ^           |  BL2
		 * |          |                 | BL2 free  |  total
		 * |          |                 |   size    |  size
		 * |----------| BL2 free base   v           |
		 * |   BL2    |                             |
		 * ------------ BL2 total base              v
		 */
		unsigned long bl2_size;

		bl31_mem_layout->free_base = bl2_mem_layout->total_base;

		bl2_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
		bl31_mem_layout->free_size = bl2_mem_layout->free_size + bl2_size;
	}

	bl31_mem_layout->total_base = bl2_mem_layout->total_base;
	bl31_mem_layout->total_size = bl2_mem_layout->total_size;
	bl31_mem_layout->attr = load_type;

203
	flush_dcache_range((unsigned long) bl31_mem_layout, sizeof(meminfo_t));
204
205
206
207
208
209
210
211
212
	return;
}

/*******************************************************************************
 * Function that takes a memory layout into which BL2 has been either top or
 * bottom loaded along with the address where BL2 has been loaded in it. Using
 * this information, it populates bl2_mem_layout to tell BL2 how much memory
 * it has access to and how much is available for use.
 ******************************************************************************/
213
214
void init_bl2_mem_layout(meminfo_t *bl1_mem_layout,
			 meminfo_t *bl2_mem_layout,
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
			 unsigned int load_type,
			 unsigned long bl2_base)
{
	unsigned tmp;

	if (load_type == BOT_LOAD) {
		bl2_mem_layout->total_base = bl2_base;
		tmp = bl1_mem_layout->free_base - bl2_base;
		bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp;

	} else {
		bl2_mem_layout->total_base = bl1_mem_layout->free_base;
		tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size;
		bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base;
	}

	bl2_mem_layout->free_base = bl1_mem_layout->free_base;
	bl2_mem_layout->free_size = bl1_mem_layout->free_size;
	bl2_mem_layout->attr = load_type;

235
	flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo_t));
236
237
238
239
240
	return;
}

static void dump_load_info(unsigned long image_load_addr,
			   unsigned long image_size,
241
			   const meminfo_t *mem_layout)
242
243
244
245
246
247
248
249
250
251
252
253
{
#if DEBUG
	printf("Trying to load image at address 0x%lx, size = 0x%lx\r\n",
		image_load_addr, image_size);
	printf("Current memory layout:\r\n");
	printf("  total region = [0x%lx, 0x%lx]\r\n", mem_layout->total_base,
			mem_layout->total_base + mem_layout->total_size);
	printf("  free region = [0x%lx, 0x%lx]\r\n", mem_layout->free_base,
			mem_layout->free_base + mem_layout->free_size);
#endif
}

Ryan Harkin's avatar
Ryan Harkin committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/* Generic function to return the size of an image */
unsigned long image_size(const char *image_name)
{
	io_dev_handle dev_handle;
	io_handle image_handle;
	void *image_spec;
	size_t image_size = 0;
	int io_result = IO_FAIL;

	assert(image_name != NULL);

	/* Obtain a reference to the image by querying the platform layer */
	io_result = plat_get_image_source(image_name, &dev_handle, &image_spec);
	if (io_result != IO_SUCCESS) {
		WARN("Failed to obtain reference to image '%s' (%i)\n",
			image_name, io_result);
		return 0;
	}

	/* Attempt to access the image */
	io_result = io_open(dev_handle, image_spec, &image_handle);
	if (io_result != IO_SUCCESS) {
		WARN("Failed to access image '%s' (%i)\n",
			image_name, io_result);
		return 0;
	}

	/* Find the size of the image */
	io_result = io_size(image_handle, &image_size);
	if ((io_result != IO_SUCCESS) || (image_size == 0)) {
		WARN("Failed to determine the size of the image '%s' file (%i)\n",
			image_name, io_result);
	}
	io_result = io_close(image_handle);
	/* Ignore improbable/unrecoverable error in 'close' */

	/* TODO: Consider maintaining open device connection from this
	 * bootloader stage
	 */
	io_result = io_dev_close(dev_handle);
	/* Ignore improbable/unrecoverable error in 'dev_close' */

	return image_size;
}
298
/*******************************************************************************
299
 * Generic function to load an image into the trusted RAM,
300
301
302
303
 * given a name, extents of free memory & whether the image should be loaded at
 * the bottom or top of the free memory. It updates the memory layout if the
 * load is successful.
 ******************************************************************************/
304
unsigned long load_image(meminfo_t *mem_layout,
305
306
307
308
			 const char *image_name,
			 unsigned int load_type,
			 unsigned long fixed_addr)
{
309
310
311
	io_dev_handle dev_handle;
	io_handle image_handle;
	void *image_spec;
312
313
314
	unsigned long temp_image_base = 0;
	unsigned long image_base = 0;
	long offset = 0;
315
316
317
318
319
320
321
322
323
324
	size_t image_size = 0;
	size_t bytes_read = 0;
	int io_result = IO_FAIL;

	assert(mem_layout != NULL);
	assert(image_name != NULL);

	/* Obtain a reference to the image by querying the platform layer */
	io_result = plat_get_image_source(image_name, &dev_handle, &image_spec);
	if (io_result != IO_SUCCESS) {
325
		WARN("Failed to obtain reference to image '%s' (%i)\n",
326
327
328
			image_name, io_result);
		return 0;
	}
329

330
331
332
	/* Attempt to access the image */
	io_result = io_open(dev_handle, image_spec, &image_handle);
	if (io_result != IO_SUCCESS) {
333
		WARN("Failed to access image '%s' (%i)\n",
334
			image_name, io_result);
335
336
337
		return 0;
	}

338
339
340
	/* Find the size of the image */
	io_result = io_size(image_handle, &image_size);
	if ((io_result != IO_SUCCESS) || (image_size == 0)) {
341
		WARN("Failed to determine the size of the image '%s' file (%i)\n",
342
343
344
345
			image_name, io_result);
		goto fail;
	}

346
	/* See if we have enough space */
347
	if (image_size > mem_layout->free_size) {
348
		WARN("Cannot load '%s' file: Not enough space.\n",
349
			image_name);
350
351
		dump_load_info(0, image_size, mem_layout);
		goto fail;
352
353
354
355
356
357
358
359
	}

	switch (load_type) {

	case TOP_LOAD:

	  /* Load the image in the top of free memory */
	  temp_image_base = mem_layout->free_base + mem_layout->free_size;
360
	  temp_image_base -= image_size;
361
362
363
364
365
366

	  /* Page align base address and check whether the image still fits */
	  image_base = page_align(temp_image_base, DOWN);
	  assert(image_base <= temp_image_base);

	  if (image_base < mem_layout->free_base) {
367
		WARN("Cannot load '%s' file: Not enough space.\n",
368
369
370
			image_name);
		dump_load_info(image_base, image_size, mem_layout);
		goto fail;
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
	  }

	  /* Calculate the amount of extra memory used due to alignment */
	  offset = temp_image_base - image_base;

	  break;

	case BOT_LOAD:

	  /* Load the BL2 image in the bottom of free memory */
	  temp_image_base = mem_layout->free_base;
	  image_base = page_align(temp_image_base, UP);
	  assert(image_base >= temp_image_base);

	  /* Page align base address and check whether the image still fits */
386
	  if (image_base + image_size >
387
	      mem_layout->free_base + mem_layout->free_size) {
388
		  WARN("Cannot load '%s' file: Not enough space.\n",
389
			  image_name);
390
391
		  dump_load_info(image_base, image_size, mem_layout);
		  goto fail;
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
	  }

	  /* Calculate the amount of extra memory used due to alignment */
	  offset = image_base - temp_image_base;

	  break;

	default:
	  assert(0);

	}

	/*
	 * Some images must be loaded at a fixed address, not a dynamic one.
	 *
	 * This has been implemented as a hack on top of the existing dynamic
	 * loading mechanism, for the time being.  If the 'fixed_addr' function
	 * argument is different from zero, then it will force the load address.
	 * So we still have this principle of top/bottom loading but the code
	 * determining the load address is bypassed and the load address is
	 * forced to the fixed one.
	 *
	 * This can result in quite a lot of wasted space because we still use
	 * 1 sole meminfo structure to represent the extents of free memory,
	 * where we should use some sort of linked list.
	 *
	 * E.g. we want to load BL2 at address 0x04020000, the resulting memory
	 *      layout should look as follows:
	 * ------------ 0x04040000
	 * |          |  <- Free space (1)
	 * |----------|
	 * |   BL2    |
	 * |----------| 0x04020000
	 * |          |  <- Free space (2)
	 * |----------|
	 * |   BL1    |
	 * ------------ 0x04000000
	 *
	 * But in the current hacky implementation, we'll need to specify
	 * whether BL2 is loaded at the top or bottom of the free memory.
	 * E.g. if BL2 is considered as top-loaded, the meminfo structure
	 * will give the following view of the memory, hiding the chunk of
	 * free memory above BL2:
	 * ------------ 0x04040000
	 * |          |
	 * |          |
	 * |   BL2    |
	 * |----------| 0x04020000
	 * |          |  <- Free space (2)
	 * |----------|
	 * |   BL1    |
	 * ------------ 0x04000000
	 */
	if (fixed_addr != 0) {
		/* Load the image at the given address. */
		image_base = fixed_addr;

		/* Check whether the image fits. */
		if ((image_base < mem_layout->free_base) ||
451
		    (image_base + image_size >
452
		       mem_layout->free_base + mem_layout->free_size)) {
453
			WARN("Cannot load '%s' file: Not enough space.\n",
454
				image_name);
455
456
			dump_load_info(image_base, image_size, mem_layout);
			goto fail;
457
458
459
460
		}

		/* Check whether the fixed load address is page-aligned. */
		if (!is_page_aligned(image_base)) {
461
			WARN("Cannot load '%s' file at unaligned address 0x%lx\n",
462
				image_name, fixed_addr);
463
			goto fail;
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
		}

		/*
		 * Calculate the amount of extra memory used due to fixed
		 * loading.
		 */
		if (load_type == TOP_LOAD) {
			unsigned long max_addr, space_used;
			/*
			 * ------------ max_addr
			 * | /wasted/ |                 | offset
			 * |..........|..............................
			 * |  image   |                 | image_flen
			 * |----------| fixed_addr
			 * |          |
			 * |          |
			 * ------------ total_base
			 */
			max_addr = mem_layout->total_base + mem_layout->total_size;
			/*
			 * Compute the amount of memory used by the image.
			 * Corresponds to all space above the image load
			 * address.
			 */
			space_used = max_addr - fixed_addr;
			/*
			 * Calculate the amount of wasted memory within the
			 * amount of memory used by the image.
			 */
493
			offset = space_used - image_size;
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
		} else /* BOT_LOAD */
			/*
			 * ------------
			 * |          |
			 * |          |
			 * |----------|
			 * |  image   |
			 * |..........| fixed_addr
			 * | /wasted/ |                 | offset
			 * ------------ total_base
			 */
			offset = fixed_addr - mem_layout->total_base;
	}

	/* We have enough space so load the image now */
509
510
511
	/* TODO: Consider whether to try to recover/retry a partially successful read */
	io_result = io_read(image_handle, (void *)image_base, image_size, &bytes_read);
	if ((io_result != IO_SUCCESS) || (bytes_read < image_size)) {
512
		WARN("Failed to load '%s' file (%i)\n", image_name, io_result);
513
		goto fail;
514
515
516
517
518
519
520
521
	}

	/*
	 * File has been successfully loaded. Update the free memory
	 * data structure & flush the contents of the TZRAM so that
	 * the next EL can see it.
	 */
	/* Update the memory contents */
522
	flush_dcache_range(image_base, image_size);
523

524
	mem_layout->free_size -= image_size + offset;
525
526
527

	/* Update the base of free memory since its moved up */
	if (load_type == BOT_LOAD)
528
529
530
531
532
533
534
535
536
		mem_layout->free_base += offset + image_size;

exit:
	io_result = io_close(image_handle);
	/* Ignore improbable/unrecoverable error in 'close' */

	/* TODO: Consider maintaining open device connection from this bootloader stage */
	io_result = io_dev_close(dev_handle);
	/* Ignore improbable/unrecoverable error in 'dev_close' */
537
538

	return image_base;
539
540
541

fail:	image_base = 0;
	goto exit;
542
543
544
545
546
547
548
549
}

/*******************************************************************************
 * Run a loaded image from the given entry point. This could result in either
 * dropping into a lower exception level or jumping to a higher exception level.
 * The only way of doing the latter is through an SMC. In either case, setup the
 * parameters for the EL change request correctly.
 ******************************************************************************/
550
551
552
553
554
void __dead2 run_image(unsigned long entrypoint,
		       unsigned long spsr,
		       unsigned long target_security_state,
		       void *first_arg,
		       void *second_arg)
555
{
556
	el_change_info_t run_image_info;
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
	unsigned long current_el = read_current_el();

	/* Tell next EL what we want done */
	run_image_info.args.arg0 = RUN_IMAGE;
	run_image_info.entrypoint = entrypoint;
	run_image_info.spsr = spsr;
	run_image_info.security_state = target_security_state;

	/*
	 * If we are EL3 then only an eret can take us to the desired
	 * exception level. Else for the time being assume that we have
	 * to jump to a higher EL and issue an SMC. Contents of argY
	 * will go into the general purpose register xY e.g. arg0->x0
	 */
	if (GET_EL(current_el) == MODE_EL3) {
572
573
		run_image_info.args.arg1 = (unsigned long) first_arg;
		run_image_info.args.arg2 = (unsigned long) second_arg;
574
575
576
	} else {
		run_image_info.args.arg1 = entrypoint;
		run_image_info.args.arg2 = spsr;
577
578
		run_image_info.args.arg3 = (unsigned long) first_arg;
		run_image_info.args.arg4 = (unsigned long) second_arg;
579
580
	}

581
	change_el(&run_image_info);
582
}