sunxi_power.c 8.59 KB
Newer Older
1
2
3
4
5
6
7
/*
 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
 * Copyright (c) 2018, Icenowy Zheng <icenowy@aosc.io>
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

8
#include <allwinner/sunxi_rsb.h>
9
#include <arch_helpers.h>
10
#include <debug.h>
11
12
#include <delay_timer.h>
#include <errno.h>
13
#include <libfdt.h>
14
15
16
17
#include <mmio.h>
#include <platform_def.h>
#include <sunxi_def.h>
#include <sunxi_mmap.h>
18
#include <sunxi_private.h>
19

20
21
22
static enum pmic_type {
	GENERIC_H5,
	GENERIC_A64,
23
	REF_DESIGN_H5,	/* regulators controlled by GPIO pins on port L */
24
	AXP803_RSB,	/* PMIC connected via RSB on most A64 boards */
25
26
} pmic;

27
28
29
#define AXP803_HW_ADDR	0x3a3
#define AXP803_RT_ADDR	0x2d

30
31
32
33
34
35
36
37
/*
 * On boards without a proper PMIC we struggle to turn off the system properly.
 * Try to turn off as much off the system as we can, to reduce power
 * consumption. This should be entered with only one core running and SMP
 * disabled.
 * This function only cares about peripherals.
 */
void sunxi_turn_off_soc(uint16_t socid)
38
{
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
	int i;

	/** Turn off most peripherals, most importantly DRAM users. **/
	/* Keep DRAM controller running for now. */
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, ~BIT_32(14));
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, ~BIT_32(14));
	/* Contains msgbox (bit 21) and spinlock (bit 22) */
	mmio_write_32(SUNXI_CCU_BASE + 0x2c4, 0);
	mmio_write_32(SUNXI_CCU_BASE + 0x64, 0);
	mmio_write_32(SUNXI_CCU_BASE + 0x2c8, 0);
	/* Keep PIO controller running for now. */
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x68, ~(BIT_32(5)));
	mmio_write_32(SUNXI_CCU_BASE + 0x2d0, 0);
	/* Contains UART0 (bit 16) */
	mmio_write_32(SUNXI_CCU_BASE + 0x2d8, 0);
	mmio_write_32(SUNXI_CCU_BASE + 0x6c, 0);
	mmio_write_32(SUNXI_CCU_BASE + 0x70, 0);

	/** Turn off DRAM controller. **/
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, BIT_32(14));
	mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, BIT_32(14));
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
	/** Migrate CPU and bus clocks away from the PLLs. **/
	/* AHB1: use OSC24M/1, APB1 = AHB1 / 2 */
	mmio_write_32(SUNXI_CCU_BASE + 0x54, 0x1000);
	/* APB2: use OSC24M */
	mmio_write_32(SUNXI_CCU_BASE + 0x58, 0x1000000);
	/* AHB2: use AHB1 clock */
	mmio_write_32(SUNXI_CCU_BASE + 0x5c, 0);
	/* CPU: use OSC24M */
	mmio_write_32(SUNXI_CCU_BASE + 0x50, 0x10000);

	/** Turn off PLLs. **/
	for (i = 0; i < 6; i++)
		mmio_clrbits_32(SUNXI_CCU_BASE + i * 8, BIT(31));
	switch (socid) {
	case SUNXI_SOC_H5:
		mmio_clrbits_32(SUNXI_CCU_BASE + 0x44, BIT(31));
		break;
	case SUNXI_SOC_A64:
		mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c, BIT(31));
		mmio_clrbits_32(SUNXI_CCU_BASE + 0x4c, BIT(31));
		break;
	}
}

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
static int rsb_init(void)
{
	int ret;

	ret = rsb_init_controller();
	if (ret)
		return ret;

	/* Start with 400 KHz to issue the I2C->RSB switch command. */
	ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 400000);
	if (ret)
		return ret;

	/*
	 * Initiate an I2C transaction to write 0x7c into register 0x3e,
	 * switching the PMIC to RSB mode.
	 */
	ret = rsb_set_device_mode(0x7c3e00);
	if (ret)
		return ret;

	/* Now in RSB mode, switch to the recommended 3 MHz. */
	ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 3000000);
	if (ret)
		return ret;

	/* Associate the 8-bit runtime address with the 12-bit bus address. */
	return rsb_assign_runtime_address(AXP803_HW_ADDR,
					  AXP803_RT_ADDR);
}

116
117
118
119
120
static int axp_write(uint8_t reg, uint8_t val)
{
	return rsb_write(AXP803_RT_ADDR, reg, val);
}

121
122
123
124
125
126
127
128
129
130
131
132
133
134
static int axp_setbits(uint8_t reg, uint8_t set_mask)
{
	uint8_t regval;
	int ret;

	ret = rsb_read(AXP803_RT_ADDR, reg);
	if (ret < 0)
		return ret;

	regval = ret | set_mask;

	return rsb_write(AXP803_RT_ADDR, reg, regval);
}

135
136
137
138
139
140
141
142
143
static bool should_enable_regulator(const void *fdt, int node)
{
	if (fdt_getprop(fdt, node, "phandle", NULL) != NULL)
		return true;
	if (fdt_getprop(fdt, node, "regulator-always-on", NULL) != NULL)
		return true;
	return false;
}

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*
 * Retrieve the voltage from a given regulator DTB node.
 * Both the regulator-{min,max}-microvolt properties must be present and
 * have the same value. Return that value in millivolts.
 */
static int fdt_get_regulator_millivolt(const void *fdt, int node)
{
	const fdt32_t *prop;
	uint32_t min_volt;

	prop = fdt_getprop(fdt, node, "regulator-min-microvolt", NULL);
	if (prop == NULL)
		return -EINVAL;
	min_volt = fdt32_to_cpu(*prop);

	prop = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL);
	if (prop == NULL)
		return -EINVAL;

	if (fdt32_to_cpu(*prop) != min_volt)
		return -EINVAL;

	return min_volt / 1000;
}

#define NO_SPLIT 0xff

struct axp_regulator {
	char *dt_name;
	uint16_t min_volt;
	uint16_t max_volt;
	uint16_t step;
	unsigned char split;
	unsigned char volt_reg;
	unsigned char switch_reg;
	unsigned char switch_bit;
} regulators[] = {
	{"dcdc1", 1600, 3400, 100, NO_SPLIT, 0x20, 0xff, 9},
	{"dcdc5",  800, 1840,  10,       32, 0x24, 0xff, 9},
	{"dldo1",  700, 3300, 100, NO_SPLIT, 0x15, 0x12, 3},
	{"dldo2",  700, 4200, 100,       27, 0x16, 0x12, 4},
	{"dldo3",  700, 3300, 100, NO_SPLIT, 0x17, 0x12, 5},
	{"fldo1",  700, 1450,  50, NO_SPLIT, 0x1c, 0x13, 2},
	{}
};

static int setup_regulator(const void *fdt, int node,
			   const struct axp_regulator *reg)
{
	int mvolt;
	uint8_t regval;

	if (!should_enable_regulator(fdt, node))
		return -ENOENT;

	mvolt = fdt_get_regulator_millivolt(fdt, node);
	if (mvolt < reg->min_volt || mvolt > reg->max_volt)
		return -EINVAL;

	regval = (mvolt / reg->step) - (reg->min_volt / reg->step);
	if (regval > reg->split)
		regval = ((regval - reg->split) / 2) + reg->split;

	axp_write(reg->volt_reg, regval);
	if (reg->switch_reg < 0xff)
		axp_setbits(reg->switch_reg, BIT(reg->switch_bit));

	INFO("PMIC: AXP803: %s voltage: %d.%03dV\n", reg->dt_name,
	     mvolt / 1000, mvolt % 1000);

	return 0;
}

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
static void setup_axp803_rails(const void *fdt)
{
	int node;

	/* locate the PMIC DT node, bail out if not found */
	node = fdt_node_offset_by_compatible(fdt, -1, "x-powers,axp803");
	if (node == -FDT_ERR_NOTFOUND) {
		WARN("BL31: PMIC: No AXP803 DT node, skipping initial setup.\n");
		return;
	}

	if (fdt_getprop(fdt, node, "x-powers,drive-vbus-en", NULL))
		axp_setbits(0x8f, BIT(4));

	/* descend into the "regulators" subnode */
	node = fdt_first_subnode(fdt, node);

	/* iterate over all regulators to find used ones */
	for (node = fdt_first_subnode(fdt, node);
	     node != -FDT_ERR_NOTFOUND;
	     node = fdt_next_subnode(fdt, node)) {
238
		struct axp_regulator *reg;
239
240
241
242
243
244
245
246
		const char *name;
		int length;

		/* We only care if it's always on or referenced. */
		if (!should_enable_regulator(fdt, node))
			continue;

		name = fdt_get_name(fdt, node, &length);
247
248
249
250
251
252
253
		for (reg = regulators; reg->dt_name; reg++) {
			if (!strncmp(name, reg->dt_name, length)) {
				setup_regulator(fdt, node, reg);
				break;
			}
		}

254
255
256
257
258
259
260
261
		if (!strncmp(name, "dc1sw", length)) {
			INFO("PMIC: AXP803: Enabling DC1SW\n");
			axp_setbits(0x12, BIT(7));
			continue;
		}
	}
}

262
int sunxi_pmic_setup(uint16_t socid, const void *fdt)
263
{
264
265
	int ret;

266
267
	switch (socid) {
	case SUNXI_SOC_H5:
268
269
		pmic = REF_DESIGN_H5;
		NOTICE("BL31: PMIC: Defaulting to PortL GPIO according to H5 reference design.\n");
270
271
272
		break;
	case SUNXI_SOC_A64:
		pmic = GENERIC_A64;
273
274
275
276
277
278
279
280
281
282
283
		ret = sunxi_init_platform_r_twi(socid, true);
		if (ret)
			return ret;

		ret = rsb_init();
		if (ret)
			return ret;

		pmic = AXP803_RSB;
		NOTICE("BL31: PMIC: Detected AXP803 on RSB.\n");

284
285
286
		if (fdt)
			setup_axp803_rails(fdt);

287
288
289
290
291
		break;
	default:
		NOTICE("BL31: PMIC: No support for Allwinner %x SoC.\n", socid);
		return -ENODEV;
	}
292
293
	return 0;
}
294
295
296

void __dead2 sunxi_power_down(void)
{
297
298
299
300
301
302
303
304
305
306
307
308
	switch (pmic) {
	case GENERIC_H5:
		/* Turn off as many peripherals and clocks as we can. */
		sunxi_turn_off_soc(SUNXI_SOC_H5);
		/* Turn off the pin controller now. */
		mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
		break;
	case GENERIC_A64:
		/* Turn off as many peripherals and clocks as we can. */
		sunxi_turn_off_soc(SUNXI_SOC_A64);
		/* Turn off the pin controller now. */
		mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
		break;
	case REF_DESIGN_H5:
		sunxi_turn_off_soc(SUNXI_SOC_H5);

		/*
		 * Switch PL pins to power off the board:
		 * - PL5 (VCC_IO) -> high
		 * - PL8 (PWR-STB = CPU power supply) -> low
		 * - PL9 (PWR-DRAM) ->low
		 * - PL10 (power LED) -> low
		 * Note: Clearing PL8 will reset the board, so keep it up.
		 */
		sunxi_set_gpio_out('L', 5, 1);
		sunxi_set_gpio_out('L', 9, 0);
		sunxi_set_gpio_out('L', 10, 0);

		/* Turn off pin controller now. */
		mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);

328
329
330
331
332
333
334
335
		break;
	case AXP803_RSB:
		/* (Re-)init RSB in case the rich OS has disabled it. */
		sunxi_init_platform_r_twi(SUNXI_SOC_A64, true);
		rsb_init();

		/* Set "power disable control" bit */
		axp_setbits(0x32, BIT(7));
336
337
338
339
340
341
342
		break;
	default:
		break;
	}

	udelay(1000);
	ERROR("PSCI: Cannot turn off system, halting.\n");
343
344
345
	wfi();
	panic();
}