opteed_main.c 13.8 KB
Newer Older
Jens Wiklander's avatar
Jens Wiklander committed
1
/*
2
 * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
Jens Wiklander's avatar
Jens Wiklander committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */


/*******************************************************************************
 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
 * plug-in component to the Secure Monitor, registered as a runtime service. The
 * SPD is expected to be a functional extension of the Secure Payload (SP) that
 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
 * the Trusted OS/Applications range to the dispatcher. The SPD will either
 * handle the request locally or delegate it to the Secure Payload. It is also
 * responsible for initialising and maintaining communication with the SP.
 ******************************************************************************/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <bl31.h>
#include <context_mgmt.h>
#include <debug.h>
#include <errno.h>
#include <platform.h>
#include <runtime_svc.h>
#include <stddef.h>
#include <uuid.h>
#include "opteed_private.h"
#include "teesmc_opteed_macros.h"
#include "teesmc_opteed.h"

/*******************************************************************************
 * Address of the entrypoint vector table in OPTEE. It is
 * initialised once on the primary core after a cold boot.
 ******************************************************************************/
optee_vectors_t *optee_vectors;

/*******************************************************************************
 * Array to keep track of per-cpu OPTEE state
 ******************************************************************************/
optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
uint32_t opteed_rw;



static int32_t opteed_init(void);

/*******************************************************************************
 * This function is the handler registered for S-EL1 interrupts by the
 * OPTEED. It validates the interrupt and upon success arranges entry into
 * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
 ******************************************************************************/
static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
					    uint32_t flags,
					    void *handle,
					    void *cookie)
{
	uint32_t linear_id;
	optee_context_t *optee_ctx;

	/* Check the security state when the exception was generated */
	assert(get_interrupt_src_ss(flags) == NON_SECURE);

#if IMF_READ_INTERRUPT_ID
	/* Check the security status of the interrupt */
	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
#endif

	/* Sanity check the pointer to this cpu's context */
	assert(handle == cm_get_context(NON_SECURE));

	/* Save the non-secure context before entering the OPTEE */
	cm_el1_sysregs_context_save(NON_SECURE);

	/* Get a reference to this cpu's OPTEE context */
100
	linear_id = plat_my_core_pos();
Jens Wiklander's avatar
Jens Wiklander committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
	optee_ctx = &opteed_sp_context[linear_id];
	assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));

	cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
	cm_el1_sysregs_context_restore(SECURE);
	cm_set_next_eret_context(SECURE);

	/*
	 * Tell the OPTEE that it has to handle an FIQ (synchronously).
	 * Also the instruction in normal world where the interrupt was
	 * generated is passed for debugging purposes. It is safe to
	 * retrieve this address from ELR_EL3 as the secure context will
	 * not take effect until el3_exit().
	 */
	SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
}

/*******************************************************************************
 * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
 * (aarch32/aarch64) if not already known and initialises the context for entry
 * into OPTEE for its initialization.
 ******************************************************************************/
int32_t opteed_setup(void)
{
	entry_point_info_t *optee_ep_info;
	uint32_t linear_id;

128
	linear_id = plat_my_core_pos();
Jens Wiklander's avatar
Jens Wiklander committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

	/*
	 * Get information about the Secure Payload (BL32) image. Its
	 * absence is a critical failure.  TODO: Add support to
	 * conditionally include the SPD service
	 */
	optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
	if (!optee_ep_info) {
		WARN("No OPTEE provided by BL2 boot loader, Booting device"
			" without OPTEE initialization. SMC`s destined for OPTEE"
			" will return SMC_UNK\n");
		return 1;
	}

	/*
	 * If there's no valid entry point for SP, we return a non-zero value
	 * signalling failure initializing the service. We bail out without
	 * registering any handlers
	 */
	if (!optee_ep_info->pc)
		return 1;

	/*
	 * We could inspect the SP image and determine it's execution
	 * state i.e whether AArch32 or AArch64. Assuming it's AArch32
	 * for the time being.
	 */
	opteed_rw = OPTEE_AARCH32;
	opteed_init_optee_ep_state(optee_ep_info,
				opteed_rw,
				optee_ep_info->pc,
				&opteed_sp_context[linear_id]);

	/*
	 * All OPTEED initialization done. Now register our init function with
	 * BL31 for deferred invocation
	 */
	bl31_register_bl32_init(&opteed_init);

	return 0;
}

/*******************************************************************************
 * This function passes control to the OPTEE image (BL32) for the first time
 * on the primary cpu after a cold boot. It assumes that a valid secure
 * context has already been created by opteed_setup() which can be directly
 * used.  It also assumes that a valid non-secure context has been
 * initialised by PSCI so it does not need to save and restore any
 * non-secure state. This function performs a synchronous entry into
 * OPTEE. OPTEE passes control back to this routine through a SMC.
 ******************************************************************************/
static int32_t opteed_init(void)
{
182
	uint32_t linear_id = plat_my_core_pos();
Jens Wiklander's avatar
Jens Wiklander committed
183
184
185
186
187
188
189
190
191
192
193
	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
	entry_point_info_t *optee_entry_point;
	uint64_t rc;

	/*
	 * Get information about the OPTEE (BL32) image. Its
	 * absence is a critical failure.
	 */
	optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
	assert(optee_entry_point);

194
	cm_init_my_context(optee_entry_point);
Jens Wiklander's avatar
Jens Wiklander committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

	/*
	 * Arrange for an entry into OPTEE. It will be returned via
	 * OPTEE_ENTRY_DONE case
	 */
	rc = opteed_synchronous_sp_entry(optee_ctx);
	assert(rc != 0);

	return rc;
}


/*******************************************************************************
 * This function is responsible for handling all SMCs in the Trusted OS/App
 * range from the non-secure state as defined in the SMC Calling Convention
 * Document. It is also responsible for communicating with the Secure
 * payload to delegate work and return results back to the non-secure
 * state. Lastly it will also return any information that OPTEE needs to do
 * the work assigned to it.
 ******************************************************************************/
uint64_t opteed_smc_handler(uint32_t smc_fid,
			 uint64_t x1,
			 uint64_t x2,
			 uint64_t x3,
			 uint64_t x4,
			 void *cookie,
			 void *handle,
			 uint64_t flags)
{
	cpu_context_t *ns_cpu_context;
225
	uint32_t linear_id = plat_my_core_pos();
Jens Wiklander's avatar
Jens Wiklander committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
	uint64_t rc;

	/*
	 * Determine which security state this SMC originated from
	 */

	if (is_caller_non_secure(flags)) {
		/*
		 * This is a fresh request from the non-secure client.
		 * The parameters are in x1 and x2. Figure out which
		 * registers need to be preserved, save the non-secure
		 * state and send the request to the secure payload.
		 */
		assert(handle == cm_get_context(NON_SECURE));

		cm_el1_sysregs_context_save(NON_SECURE);

		/*
		 * We are done stashing the non-secure context. Ask the
		 * OPTEE to do the work now.
		 */

		/*
		 * Verify if there is a valid context to use, copy the
		 * operation type and parameters to the secure context
		 * and jump to the fast smc entry point in the secure
		 * payload. Entry into S-EL1 will take place upon exit
		 * from this function.
		 */
		assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));

		/* Set appropriate entry for SMC.
		 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
		 * flags as appropriate.
		 */
		if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
			cm_set_elr_el3(SECURE, (uint64_t)
					&optee_vectors->fast_smc_entry);
		} else {
			cm_set_elr_el3(SECURE, (uint64_t)
					&optee_vectors->std_smc_entry);
		}

		cm_el1_sysregs_context_restore(SECURE);
		cm_set_next_eret_context(SECURE);

		/* Propagate hypervisor client ID */
		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
			      CTX_GPREG_X7,
			      read_ctx_reg(get_gpregs_ctx(handle),
					   CTX_GPREG_X7));

		SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
	}

	/*
	 * Returning from OPTEE
	 */

	switch (smc_fid) {
	/*
	 * OPTEE has finished initialising itself after a cold boot
	 */
	case TEESMC_OPTEED_RETURN_ENTRY_DONE:
		/*
		 * Stash the OPTEE entry points information. This is done
		 * only once on the primary cpu
		 */
		assert(optee_vectors == NULL);
		optee_vectors = (optee_vectors_t *) x1;

		if (optee_vectors) {
			set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);

			/*
			 * OPTEE has been successfully initialized.
			 * Register power management hooks with PSCI
			 */
			psci_register_spd_pm_hook(&opteed_pm);

			/*
			 * Register an interrupt handler for S-EL1 interrupts
			 * when generated during code executing in the
			 * non-secure state.
			 */
			flags = 0;
			set_interrupt_rm_flag(flags, NON_SECURE);
			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
						opteed_sel1_interrupt_handler,
						flags);
			if (rc)
				panic();
		}

		/*
		 * OPTEE reports completion. The OPTEED must have initiated
		 * the original request through a synchronous entry into
		 * OPTEE. Jump back to the original C runtime context.
		 */
		opteed_synchronous_sp_exit(optee_ctx, x1);


	/*
	 * These function IDs is used only by OP-TEE to indicate it has
	 * finished:
	 * 1. turning itself on in response to an earlier psci
	 *    cpu_on request
	 * 2. resuming itself after an earlier psci cpu_suspend
	 *    request.
	 */
	case TEESMC_OPTEED_RETURN_ON_DONE:
	case TEESMC_OPTEED_RETURN_RESUME_DONE:


	/*
	 * These function IDs is used only by the SP to indicate it has
	 * finished:
	 * 1. suspending itself after an earlier psci cpu_suspend
	 *    request.
	 * 2. turning itself off in response to an earlier psci
	 *    cpu_off request.
	 */
	case TEESMC_OPTEED_RETURN_OFF_DONE:
	case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
	case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
	case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:

		/*
		 * OPTEE reports completion. The OPTEED must have initiated the
		 * original request through a synchronous entry into OPTEE.
		 * Jump back to the original C runtime context, and pass x1 as
		 * return value to the caller
		 */
		opteed_synchronous_sp_exit(optee_ctx, x1);

	/*
	 * OPTEE is returning from a call or being preempted from a call, in
	 * either case execution should resume in the normal world.
	 */
	case TEESMC_OPTEED_RETURN_CALL_DONE:
		/*
		 * This is the result from the secure client of an
		 * earlier request. The results are in x0-x3. Copy it
		 * into the non-secure context, save the secure state
		 * and return to the non-secure state.
		 */
		assert(handle == cm_get_context(SECURE));
		cm_el1_sysregs_context_save(SECURE);

		/* Get a reference to the non-secure context */
		ns_cpu_context = cm_get_context(NON_SECURE);
		assert(ns_cpu_context);

		/* Restore non-secure state */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET4(ns_cpu_context, x1, x2, x3, x4);

	/*
	 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
	 * should resume in the normal world.
	 */
	case TEESMC_OPTEED_RETURN_FIQ_DONE:
		/* Get a reference to the non-secure context */
		ns_cpu_context = cm_get_context(NON_SECURE);
		assert(ns_cpu_context);

		/*
		 * Restore non-secure state. There is no need to save the
		 * secure system register context since OPTEE was supposed
		 * to preserve it during S-EL1 interrupt handling.
		 */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET0((uint64_t) ns_cpu_context);

	default:
		panic();
	}
}

/* Define an OPTEED runtime service descriptor for fast SMC calls */
DECLARE_RT_SVC(
	opteed_fast,

	OEN_TOS_START,
	OEN_TOS_END,
	SMC_TYPE_FAST,
	opteed_setup,
	opteed_smc_handler
);

/* Define an OPTEED runtime service descriptor for standard SMC calls */
DECLARE_RT_SVC(
	opteed_std,

	OEN_TOS_START,
	OEN_TOS_END,
	SMC_TYPE_STD,
	NULL,
	opteed_smc_handler
);