• Antonio Nino Diaz's avatar
    Remove build option `ASM_ASSERTION` · 044bb2fa
    Antonio Nino Diaz authored
    
    The build option `ENABLE_ASSERTIONS` should be used instead. That way
    both C and ASM assertions can be enabled or disabled together.
    
    All occurrences of `ASM_ASSERTION` in common code and ARM platforms have
    been replaced by `ENABLE_ASSERTIONS`.
    
    ASM_ASSERTION has been removed from the user guide.
    
    Change-Id: I51f1991f11b9b7ff83e787c9a3270c274748ec6f
    Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
    044bb2fa
misc_helpers.S 15 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/*
 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <asm_macros.S>
#include <assert_macros.S>

	.globl	get_afflvl_shift
	.globl	mpidr_mask_lower_afflvls
	.globl	eret
	.globl	smc

	.globl	zero_normalmem
	.globl	zeromem
	.globl	zeromem16
	.globl	memcpy16

	.globl	disable_mmu_el3
	.globl	disable_mmu_icache_el3

#if SUPPORT_VFP
	.globl	enable_vfp
#endif

func get_afflvl_shift
	cmp	x0, #3
	cinc	x0, x0, eq
	mov	x1, #MPIDR_AFFLVL_SHIFT
	lsl	x0, x0, x1
	ret
endfunc get_afflvl_shift

func mpidr_mask_lower_afflvls
	cmp	x1, #3
	cinc	x1, x1, eq
	mov	x2, #MPIDR_AFFLVL_SHIFT
	lsl	x2, x1, x2
	lsr	x0, x0, x2
	lsl	x0, x0, x2
	ret
endfunc mpidr_mask_lower_afflvls


func eret
	eret
endfunc eret


func smc
	smc	#0
endfunc smc

/* -----------------------------------------------------------------------
 * void zeromem16(void *mem, unsigned int length);
 *
 * Initialise a memory region to 0.
 * The memory address must be 16-byte aligned.
 * NOTE: This function is deprecated and zeromem should be used instead.
 * -----------------------------------------------------------------------
 */
.equ	zeromem16, zeromem

/* -----------------------------------------------------------------------
 * void zero_normalmem(void *mem, unsigned int length);
 *
 * Initialise a region in normal memory to 0. This functions complies with the
 * AAPCS and can be called from C code.
 *
 * NOTE: MMU must be enabled when using this function as it can only operate on
 *       normal memory. It is intended to be mainly used from C code when MMU
 *       is usually enabled.
 * -----------------------------------------------------------------------
 */
.equ	zero_normalmem, zeromem_dczva

/* -----------------------------------------------------------------------
 * void zeromem(void *mem, unsigned int length);
 *
 * Initialise a region of device memory to 0. This functions complies with the
 * AAPCS and can be called from C code.
 *
 * NOTE: When data caches and MMU are enabled, zero_normalmem can usually be
 *       used instead for faster zeroing.
 *
 * -----------------------------------------------------------------------
 */
func zeromem
	/* x2 is the address past the last zeroed address */
	add	x2, x0, x1
	/*
	 * Uses the fallback path that does not use DC ZVA instruction and
	 * therefore does not need enabled MMU
	 */
	b	.Lzeromem_dczva_fallback_entry
endfunc zeromem

/* -----------------------------------------------------------------------
 * void zeromem_dczva(void *mem, unsigned int length);
 *
 * Fill a region of normal memory of size "length" in bytes with null bytes.
 * MMU must be enabled and the memory be of
 * normal type. This is because this function internally uses the DC ZVA
 * instruction, which generates an Alignment fault if used on any type of
 * Device memory (see section D3.4.9 of the ARMv8 ARM, issue k). When the MMU
 * is disabled, all memory behaves like Device-nGnRnE memory (see section
 * D4.2.8), hence the requirement on the MMU being enabled.
 * NOTE: The code assumes that the block size as defined in DCZID_EL0
 *       register is at least 16 bytes.
 *
 * -----------------------------------------------------------------------
 */
func zeromem_dczva

	/*
	 * The function consists of a series of loops that zero memory one byte
	 * at a time, 16 bytes at a time or using the DC ZVA instruction to
	 * zero aligned block of bytes, which is assumed to be more than 16.
	 * In the case where the DC ZVA instruction cannot be used or if the
	 * first 16 bytes loop would overflow, there is fallback path that does
	 * not use DC ZVA.
	 * Note: The fallback path is also used by the zeromem function that
	 *       branches to it directly.
	 *
	 *              +---------+   zeromem_dczva
	 *              |  entry  |
	 *              +----+----+
	 *                   |
	 *                   v
	 *              +---------+
	 *              | checks  |>o-------+ (If any check fails, fallback)
	 *              +----+----+         |
	 *                   |              |---------------+
	 *                   v              | Fallback path |
	 *            +------+------+       |---------------+
	 *            | 1 byte loop |       |
	 *            +------+------+ .Lzeromem_dczva_initial_1byte_aligned_end
	 *                   |              |
	 *                   v              |
	 *           +-------+-------+      |
	 *           | 16 bytes loop |      |
	 *           +-------+-------+      |
	 *                   |              |
	 *                   v              |
	 *            +------+------+ .Lzeromem_dczva_blocksize_aligned
	 *            | DC ZVA loop |       |
	 *            +------+------+       |
	 *       +--------+  |              |
	 *       |        |  |              |
	 *       |        v  v              |
	 *       |   +-------+-------+ .Lzeromem_dczva_final_16bytes_aligned
	 *       |   | 16 bytes loop |      |
	 *       |   +-------+-------+      |
	 *       |           |              |
	 *       |           v              |
	 *       |    +------+------+ .Lzeromem_dczva_final_1byte_aligned
	 *       |    | 1 byte loop |       |
	 *       |    +-------------+       |
	 *       |           |              |
	 *       |           v              |
	 *       |       +---+--+           |
	 *       |       | exit |           |
	 *       |       +------+           |
	 *       |			    |
	 *       |           +--------------+    +------------------+ zeromem
	 *       |           |  +----------------| zeromem function |
	 *       |           |  |                +------------------+
	 *       |           v  v
	 *       |    +-------------+ .Lzeromem_dczva_fallback_entry
	 *       |    | 1 byte loop |
	 *       |    +------+------+
	 *       |           |
	 *       +-----------+
	 */

	/*
	 * Readable names for registers
	 *
	 * Registers x0, x1 and x2 are also set by zeromem which
	 * branches into the fallback path directly, so cursor, length and
	 * stop_address should not be retargeted to other registers.
	 */
	cursor       .req x0 /* Start address and then current address */
	length       .req x1 /* Length in bytes of the region to zero out */
	/* Reusing x1 as length is never used after block_mask is set */
	block_mask   .req x1 /* Bitmask of the block size read in DCZID_EL0 */
	stop_address .req x2 /* Address past the last zeroed byte */
	block_size   .req x3 /* Size of a block in bytes as read in DCZID_EL0 */
	tmp1         .req x4
	tmp2         .req x5

#if ENABLE_ASSERTIONS
	/*
	 * Check for M bit (MMU enabled) of the current SCTLR_EL(1|3)
	 * register value and panic if the MMU is disabled.
	 */
#if defined(IMAGE_BL1) || defined(IMAGE_BL31)
	mrs	tmp1, sctlr_el3
#else
	mrs	tmp1, sctlr_el1
#endif

	tst	tmp1, #SCTLR_M_BIT
	ASM_ASSERT(ne)
#endif /* ENABLE_ASSERTIONS */

	/* stop_address is the address past the last to zero */
	add	stop_address, cursor, length

	/*
	 * Get block_size = (log2(<block size>) >> 2) (see encoding of
	 * dczid_el0 reg)
	 */
	mrs	block_size, dczid_el0

	/*
	 * Select the 4 lowest bits and convert the extracted log2(<block size
	 * in words>) to <block size in bytes>
	 */
	ubfx	block_size, block_size, #0, #4
	mov	tmp2, #(1 << 2)
	lsl	block_size, tmp2, block_size

#if ENABLE_ASSERTIONS
	/*
	 * Assumes block size is at least 16 bytes to avoid manual realignment
	 * of the cursor at the end of the DCZVA loop.
	 */
	cmp	block_size, #16
	ASM_ASSERT(hs)
#endif
	/*
	 * Not worth doing all the setup for a region less than a block and
	 * protects against zeroing a whole block when the area to zero is
	 * smaller than that. Also, as it is assumed that the block size is at
	 * least 16 bytes, this also protects the initial aligning loops from
	 * trying to zero 16 bytes when length is less than 16.
	 */
	cmp	length, block_size
	b.lo	.Lzeromem_dczva_fallback_entry

	/*
	 * Calculate the bitmask of the block alignment. It will never
	 * underflow as the block size is between 4 bytes and 2kB.
	 * block_mask = block_size - 1
	 */
	sub	block_mask, block_size, #1

	/*
	 * length alias should not be used after this point unless it is
	 * defined as a register other than block_mask's.
	 */
	 .unreq length

	/*
	 * If the start address is already aligned to zero block size, go
	 * straight to the cache zeroing loop. This is safe because at this
	 * point, the length cannot be smaller than a block size.
	 */
	tst	cursor, block_mask
	b.eq	.Lzeromem_dczva_blocksize_aligned

	/*
	 * Calculate the first block-size-aligned address. It is assumed that
	 * the zero block size is at least 16 bytes. This address is the last
	 * address of this initial loop.
	 */
	orr	tmp1, cursor, block_mask
	add	tmp1, tmp1, #1

	/*
	 * If the addition overflows, skip the cache zeroing loops. This is
	 * quite unlikely however.
	 */
	cbz	tmp1, .Lzeromem_dczva_fallback_entry

	/*
	 * If the first block-size-aligned address is past the last address,
	 * fallback to the simpler code.
	 */
	cmp	tmp1, stop_address
	b.hi	.Lzeromem_dczva_fallback_entry

	/*
	 * If the start address is already aligned to 16 bytes, skip this loop.
	 * It is safe to do this because tmp1 (the stop address of the initial
	 * 16 bytes loop) will never be greater than the final stop address.
	 */
	tst	cursor, #0xf
	b.eq	.Lzeromem_dczva_initial_1byte_aligned_end

	/* Calculate the next address aligned to 16 bytes */
	orr	tmp2, cursor, #0xf
	add	tmp2, tmp2, #1
	/* If it overflows, fallback to the simple path (unlikely) */
	cbz	tmp2, .Lzeromem_dczva_fallback_entry
	/*
	 * Next aligned address cannot be after the stop address because the
	 * length cannot be smaller than 16 at this point.
	 */

	/* First loop: zero byte per byte */
1:
	strb	wzr, [cursor], #1
	cmp	cursor, tmp2
	b.ne	1b
.Lzeromem_dczva_initial_1byte_aligned_end:

	/*
	 * Second loop: we need to zero 16 bytes at a time from cursor to tmp1
	 * before being able to use the code that deals with block-size-aligned
	 * addresses.
	 */
	cmp	cursor, tmp1
	b.hs	2f
1:
	stp	xzr, xzr, [cursor], #16
	cmp	cursor, tmp1
	b.lo	1b
2:

	/*
	 * Third loop: zero a block at a time using DC ZVA cache block zeroing
	 * instruction.
	 */
.Lzeromem_dczva_blocksize_aligned:
	/*
	 * Calculate the last block-size-aligned address. If the result equals
	 * to the start address, the loop will exit immediately.
	 */
	bic	tmp1, stop_address, block_mask

	cmp	cursor, tmp1
	b.hs	2f
1:
	/* Zero the block containing the cursor */
	dc	zva, cursor
	/* Increment the cursor by the size of a block */
	add	cursor, cursor, block_size
	cmp	cursor, tmp1
	b.lo	1b
2:

	/*
	 * Fourth loop: zero 16 bytes at a time and then byte per byte the
	 * remaining area
	 */
.Lzeromem_dczva_final_16bytes_aligned:
	/*
	 * Calculate the last 16 bytes aligned address. It is assumed that the
	 * block size will never be smaller than 16 bytes so that the current
	 * cursor is aligned to at least 16 bytes boundary.
	 */
	bic	tmp1, stop_address, #15

	cmp	cursor, tmp1
	b.hs	2f
1:
	stp	xzr, xzr, [cursor], #16
	cmp	cursor, tmp1
	b.lo	1b
2:

	/* Fifth and final loop: zero byte per byte */
.Lzeromem_dczva_final_1byte_aligned:
	cmp	cursor, stop_address
	b.eq	2f
1:
	strb	wzr, [cursor], #1
	cmp	cursor, stop_address
	b.ne	1b
2:
	ret

	/* Fallback for unaligned start addresses */
.Lzeromem_dczva_fallback_entry:
	/*
	 * If the start address is already aligned to 16 bytes, skip this loop.
	 */
	tst	cursor, #0xf
	b.eq	.Lzeromem_dczva_final_16bytes_aligned

	/* Calculate the next address aligned to 16 bytes */
	orr	tmp1, cursor, #15
	add	tmp1, tmp1, #1
	/* If it overflows, fallback to byte per byte zeroing */
	cbz	tmp1, .Lzeromem_dczva_final_1byte_aligned
	/* If the next aligned address is after the stop address, fall back */
	cmp	tmp1, stop_address
	b.hs	.Lzeromem_dczva_final_1byte_aligned

	/* Fallback entry loop: zero byte per byte */
1:
	strb	wzr, [cursor], #1
	cmp	cursor, tmp1
	b.ne	1b

	b	.Lzeromem_dczva_final_16bytes_aligned

	.unreq	cursor
	/*
	 * length is already unreq'ed to reuse the register for another
	 * variable.
	 */
	.unreq	stop_address
	.unreq	block_size
	.unreq	block_mask
	.unreq	tmp1
	.unreq	tmp2
endfunc zeromem_dczva

/* --------------------------------------------------------------------------
 * void memcpy16(void *dest, const void *src, unsigned int length)
 *
 * Copy length bytes from memory area src to memory area dest.
 * The memory areas should not overlap.
 * Destination and source addresses must be 16-byte aligned.
 * --------------------------------------------------------------------------
 */
func memcpy16
#if ENABLE_ASSERTIONS
	orr	x3, x0, x1
	tst	x3, #0xf
	ASM_ASSERT(eq)
#endif
/* copy 16 bytes at a time */
m_loop16:
	cmp	x2, #16
	b.lo	m_loop1
	ldp	x3, x4, [x1], #16
	stp	x3, x4, [x0], #16
	sub	x2, x2, #16
	b	m_loop16
/* copy byte per byte */
m_loop1:
	cbz	x2, m_end
	ldrb	w3, [x1], #1
	strb	w3, [x0], #1
	subs	x2, x2, #1
	b.ne	m_loop1
m_end:
	ret
endfunc memcpy16

/* ---------------------------------------------------------------------------
 * Disable the MMU at EL3
 * ---------------------------------------------------------------------------
 */

func disable_mmu_el3
	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT)
do_disable_mmu:
	mrs	x0, sctlr_el3
	bic	x0, x0, x1
	msr	sctlr_el3, x0
	isb				// ensure MMU is off
	dsb	sy
	ret
endfunc disable_mmu_el3


func disable_mmu_icache_el3
	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
	b	do_disable_mmu
endfunc disable_mmu_icache_el3

/* ---------------------------------------------------------------------------
 * Enable the use of VFP at EL3
 * ---------------------------------------------------------------------------
 */
#if SUPPORT_VFP
func enable_vfp
	mrs	x0, cpacr_el1
	orr	x0, x0, #CPACR_VFP_BITS
	msr	cpacr_el1, x0
	mrs	x0, cptr_el3
	mov	x1, #AARCH64_CPTR_TFP
	bic	x0, x0, x1
	msr	cptr_el3, x0
	isb
	ret
endfunc enable_vfp
#endif