stm32mp1_ddr.c 25.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
/*
 * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
 *
 * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
 */

#include <errno.h>
#include <stddef.h>

#include <platform_def.h>

#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32mp_pmic.h>
#include <drivers/st/stm32mp1_ddr.h>
#include <drivers/st/stm32mp1_ddr_regs.h>
#include <drivers/st/stm32mp1_pwr.h>
#include <drivers/st/stm32mp1_ram.h>
#include <lib/mmio.h>
#include <plat/common/platform.h>

struct reg_desc {
	const char *name;
	uint16_t offset;	/* Offset for base address */
	uint8_t par_offset;	/* Offset for parameter array */
};

#define INVALID_OFFSET	0xFFU

#define TIMEOUT_US_1S	1000000U

#define DDRCTL_REG(x, y)					\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
		.par_offset = offsetof(struct y, x)		\
	}

#define DDRPHY_REG(x, y)					\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
		.par_offset = offsetof(struct y, x)		\
	}

#define DDRCTL_REG_REG(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
static const struct reg_desc ddr_reg[] = {
	DDRCTL_REG_REG(mstr),
	DDRCTL_REG_REG(mrctrl0),
	DDRCTL_REG_REG(mrctrl1),
	DDRCTL_REG_REG(derateen),
	DDRCTL_REG_REG(derateint),
	DDRCTL_REG_REG(pwrctl),
	DDRCTL_REG_REG(pwrtmg),
	DDRCTL_REG_REG(hwlpctl),
	DDRCTL_REG_REG(rfshctl0),
	DDRCTL_REG_REG(rfshctl3),
	DDRCTL_REG_REG(crcparctl0),
	DDRCTL_REG_REG(zqctl0),
	DDRCTL_REG_REG(dfitmg0),
	DDRCTL_REG_REG(dfitmg1),
	DDRCTL_REG_REG(dfilpcfg0),
	DDRCTL_REG_REG(dfiupd0),
	DDRCTL_REG_REG(dfiupd1),
	DDRCTL_REG_REG(dfiupd2),
	DDRCTL_REG_REG(dfiphymstr),
	DDRCTL_REG_REG(odtmap),
	DDRCTL_REG_REG(dbg0),
	DDRCTL_REG_REG(dbg1),
	DDRCTL_REG_REG(dbgcmd),
	DDRCTL_REG_REG(poisoncfg),
	DDRCTL_REG_REG(pccfg),
};

#define DDRCTL_REG_TIMING(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
static const struct reg_desc ddr_timing[] = {
	DDRCTL_REG_TIMING(rfshtmg),
	DDRCTL_REG_TIMING(dramtmg0),
	DDRCTL_REG_TIMING(dramtmg1),
	DDRCTL_REG_TIMING(dramtmg2),
	DDRCTL_REG_TIMING(dramtmg3),
	DDRCTL_REG_TIMING(dramtmg4),
	DDRCTL_REG_TIMING(dramtmg5),
	DDRCTL_REG_TIMING(dramtmg6),
	DDRCTL_REG_TIMING(dramtmg7),
	DDRCTL_REG_TIMING(dramtmg8),
	DDRCTL_REG_TIMING(dramtmg14),
	DDRCTL_REG_TIMING(odtcfg),
};

#define DDRCTL_REG_MAP(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_map)
static const struct reg_desc ddr_map[] = {
	DDRCTL_REG_MAP(addrmap1),
	DDRCTL_REG_MAP(addrmap2),
	DDRCTL_REG_MAP(addrmap3),
	DDRCTL_REG_MAP(addrmap4),
	DDRCTL_REG_MAP(addrmap5),
	DDRCTL_REG_MAP(addrmap6),
	DDRCTL_REG_MAP(addrmap9),
	DDRCTL_REG_MAP(addrmap10),
	DDRCTL_REG_MAP(addrmap11),
};

#define DDRCTL_REG_PERF(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
static const struct reg_desc ddr_perf[] = {
	DDRCTL_REG_PERF(sched),
	DDRCTL_REG_PERF(sched1),
	DDRCTL_REG_PERF(perfhpr1),
	DDRCTL_REG_PERF(perflpr1),
	DDRCTL_REG_PERF(perfwr1),
	DDRCTL_REG_PERF(pcfgr_0),
	DDRCTL_REG_PERF(pcfgw_0),
	DDRCTL_REG_PERF(pcfgqos0_0),
	DDRCTL_REG_PERF(pcfgqos1_0),
	DDRCTL_REG_PERF(pcfgwqos0_0),
	DDRCTL_REG_PERF(pcfgwqos1_0),
	DDRCTL_REG_PERF(pcfgr_1),
	DDRCTL_REG_PERF(pcfgw_1),
	DDRCTL_REG_PERF(pcfgqos0_1),
	DDRCTL_REG_PERF(pcfgqos1_1),
	DDRCTL_REG_PERF(pcfgwqos0_1),
	DDRCTL_REG_PERF(pcfgwqos1_1),
};

#define DDRPHY_REG_REG(x)	DDRPHY_REG(x, stm32mp1_ddrphy_reg)
static const struct reg_desc ddrphy_reg[] = {
	DDRPHY_REG_REG(pgcr),
	DDRPHY_REG_REG(aciocr),
	DDRPHY_REG_REG(dxccr),
	DDRPHY_REG_REG(dsgcr),
	DDRPHY_REG_REG(dcr),
	DDRPHY_REG_REG(odtcr),
	DDRPHY_REG_REG(zq0cr1),
	DDRPHY_REG_REG(dx0gcr),
	DDRPHY_REG_REG(dx1gcr),
	DDRPHY_REG_REG(dx2gcr),
	DDRPHY_REG_REG(dx3gcr),
};

#define DDRPHY_REG_TIMING(x)	DDRPHY_REG(x, stm32mp1_ddrphy_timing)
static const struct reg_desc ddrphy_timing[] = {
	DDRPHY_REG_TIMING(ptr0),
	DDRPHY_REG_TIMING(ptr1),
	DDRPHY_REG_TIMING(ptr2),
	DDRPHY_REG_TIMING(dtpr0),
	DDRPHY_REG_TIMING(dtpr1),
	DDRPHY_REG_TIMING(dtpr2),
	DDRPHY_REG_TIMING(mr0),
	DDRPHY_REG_TIMING(mr1),
	DDRPHY_REG_TIMING(mr2),
	DDRPHY_REG_TIMING(mr3),
};

#define DDRPHY_REG_CAL(x)	DDRPHY_REG(x, stm32mp1_ddrphy_cal)
static const struct reg_desc ddrphy_cal[] = {
	DDRPHY_REG_CAL(dx0dllcr),
	DDRPHY_REG_CAL(dx0dqtr),
	DDRPHY_REG_CAL(dx0dqstr),
	DDRPHY_REG_CAL(dx1dllcr),
	DDRPHY_REG_CAL(dx1dqtr),
	DDRPHY_REG_CAL(dx1dqstr),
	DDRPHY_REG_CAL(dx2dllcr),
	DDRPHY_REG_CAL(dx2dqtr),
	DDRPHY_REG_CAL(dx2dqstr),
	DDRPHY_REG_CAL(dx3dllcr),
	DDRPHY_REG_CAL(dx3dqtr),
	DDRPHY_REG_CAL(dx3dqstr),
};

#define DDR_REG_DYN(x)						\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
		.par_offset = INVALID_OFFSET \
	}

static const struct reg_desc ddr_dyn[] = {
	DDR_REG_DYN(stat),
	DDR_REG_DYN(init0),
	DDR_REG_DYN(dfimisc),
	DDR_REG_DYN(dfistat),
	DDR_REG_DYN(swctl),
	DDR_REG_DYN(swstat),
	DDR_REG_DYN(pctrl_0),
	DDR_REG_DYN(pctrl_1),
};

#define DDRPHY_REG_DYN(x)					\
	{							\
		.name = #x,					\
		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
		.par_offset = INVALID_OFFSET			\
	}

static const struct reg_desc ddrphy_dyn[] = {
	DDRPHY_REG_DYN(pir),
	DDRPHY_REG_DYN(pgsr),
};

enum reg_type {
	REG_REG,
	REG_TIMING,
	REG_PERF,
	REG_MAP,
	REGPHY_REG,
	REGPHY_TIMING,
	REGPHY_CAL,
/*
 * Dynamic registers => managed in driver or not changed,
 * can be dumped in interactive mode.
 */
	REG_DYN,
	REGPHY_DYN,
	REG_TYPE_NB
};

enum base_type {
	DDR_BASE,
	DDRPHY_BASE,
	NONE_BASE
};

struct ddr_reg_info {
	const char *name;
	const struct reg_desc *desc;
	uint8_t size;
	enum base_type base;
};

static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
	[REG_REG] = {
		.name = "static",
		.desc = ddr_reg,
		.size = ARRAY_SIZE(ddr_reg),
		.base = DDR_BASE
	},
	[REG_TIMING] = {
		.name = "timing",
		.desc = ddr_timing,
		.size = ARRAY_SIZE(ddr_timing),
		.base = DDR_BASE
	},
	[REG_PERF] = {
		.name = "perf",
		.desc = ddr_perf,
		.size = ARRAY_SIZE(ddr_perf),
		.base = DDR_BASE
	},
	[REG_MAP] = {
		.name = "map",
		.desc = ddr_map,
		.size = ARRAY_SIZE(ddr_map),
		.base = DDR_BASE
	},
	[REGPHY_REG] = {
		.name = "static",
		.desc = ddrphy_reg,
		.size = ARRAY_SIZE(ddrphy_reg),
		.base = DDRPHY_BASE
	},
	[REGPHY_TIMING] = {
		.name = "timing",
		.desc = ddrphy_timing,
		.size = ARRAY_SIZE(ddrphy_timing),
		.base = DDRPHY_BASE
	},
	[REGPHY_CAL] = {
		.name = "cal",
		.desc = ddrphy_cal,
		.size = ARRAY_SIZE(ddrphy_cal),
		.base = DDRPHY_BASE
	},
	[REG_DYN] = {
		.name = "dyn",
		.desc = ddr_dyn,
		.size = ARRAY_SIZE(ddr_dyn),
		.base = DDR_BASE
	},
	[REGPHY_DYN] = {
		.name = "dyn",
		.desc = ddrphy_dyn,
		.size = ARRAY_SIZE(ddrphy_dyn),
		.base = DDRPHY_BASE
	},
};

static uintptr_t get_base_addr(const struct ddr_info *priv, enum base_type base)
{
	if (base == DDRPHY_BASE) {
		return (uintptr_t)priv->phy;
	} else {
		return (uintptr_t)priv->ctl;
	}
}

static void set_reg(const struct ddr_info *priv,
		    enum reg_type type,
		    const void *param)
{
	unsigned int i;
	unsigned int value;
	enum base_type base = ddr_registers[type].base;
	uintptr_t base_addr = get_base_addr(priv, base);
	const struct reg_desc *desc = ddr_registers[type].desc;

	VERBOSE("init %s\n", ddr_registers[type].name);
	for (i = 0; i < ddr_registers[type].size; i++) {
		uintptr_t ptr = base_addr + desc[i].offset;

		if (desc[i].par_offset == INVALID_OFFSET) {
			ERROR("invalid parameter offset for %s", desc[i].name);
			panic();
		} else {
			value = *((uint32_t *)((uintptr_t)param +
					       desc[i].par_offset));
			mmio_write_32(ptr, value);
		}
	}
}

static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
{
	uint32_t pgsr;
	int error = 0;
	uint64_t timeout = timeout_init_us(TIMEOUT_US_1S);

	do {
		pgsr = mmio_read_32((uintptr_t)&phy->pgsr);

		VERBOSE("  > [0x%lx] pgsr = 0x%x &\n",
			(uintptr_t)&phy->pgsr, pgsr);

		if (timeout_elapsed(timeout)) {
			panic();
		}

		if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) {
			VERBOSE("DQS Gate Trainig Error\n");
			error++;
		}

		if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) {
			VERBOSE("DQS Gate Trainig Intermittent Error\n");
			error++;
		}

		if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) {
			VERBOSE("DQS Drift Error\n");
			error++;
		}

		if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) {
			VERBOSE("Read Valid Training Error\n");
			error++;
		}

		if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) {
			VERBOSE("Read Valid Training Intermittent Error\n");
			error++;
		}
	} while (((pgsr & DDRPHYC_PGSR_IDONE) == 0U) && (error == 0));
	VERBOSE("\n[0x%lx] pgsr = 0x%x\n",
		(uintptr_t)&phy->pgsr, pgsr);
}

static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir)
{
	uint32_t pir_init = pir | DDRPHYC_PIR_INIT;

	mmio_write_32((uintptr_t)&phy->pir, pir_init);
	VERBOSE("[0x%lx] pir = 0x%x -> 0x%x\n",
		(uintptr_t)&phy->pir, pir_init,
		mmio_read_32((uintptr_t)&phy->pir));

	/* Need to wait 10 configuration clock before start polling */
	udelay(10);

	/* Wait DRAM initialization and Gate Training Evaluation complete */
	stm32mp1_ddrphy_idone_wait(phy);
}

/* Start quasi dynamic register update */
static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl)
{
	mmio_clrbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
	VERBOSE("[0x%lx] swctl = 0x%x\n",
		(uintptr_t)&ctl->swctl,  mmio_read_32((uintptr_t)&ctl->swctl));
}

/* Wait quasi dynamic register update */
static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
{
	uint64_t timeout;
	uint32_t swstat;

	mmio_setbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
	VERBOSE("[0x%lx] swctl = 0x%x\n",
		(uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl));

	timeout = timeout_init_us(TIMEOUT_US_1S);
	do {
		swstat = mmio_read_32((uintptr_t)&ctl->swstat);
		VERBOSE("[0x%lx] swstat = 0x%x ",
			(uintptr_t)&ctl->swstat, swstat);
		if (timeout_elapsed(timeout)) {
			panic();
		}
	} while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U);

	VERBOSE("[0x%lx] swstat = 0x%x\n",
		(uintptr_t)&ctl->swstat, swstat);
}

/* Wait quasi dynamic register update */
static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode)
{
	uint64_t timeout;
	uint32_t stat;
	int break_loop = 0;

	timeout = timeout_init_us(TIMEOUT_US_1S);
	for ( ; ; ) {
		uint32_t operating_mode;
		uint32_t selref_type;

		stat = mmio_read_32((uintptr_t)&priv->ctl->stat);
		operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK;
		selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK;
		VERBOSE("[0x%lx] stat = 0x%x\n",
			(uintptr_t)&priv->ctl->stat, stat);
		if (timeout_elapsed(timeout)) {
			panic();
		}

		if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
			/*
			 * Self-refresh due to software
			 * => checking also STAT.selfref_type.
			 */
			if ((operating_mode ==
			     DDRCTRL_STAT_OPERATING_MODE_SR) &&
			    (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) {
				break_loop = 1;
			}
		} else if (operating_mode == mode) {
			break_loop = 1;
		} else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) &&
			   (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) &&
			   (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) {
			/* Normal mode: handle also automatic self refresh */
			break_loop = 1;
		}

		if (break_loop == 1) {
			break;
		}
	}

	VERBOSE("[0x%lx] stat = 0x%x\n",
		(uintptr_t)&priv->ctl->stat, stat);
}

/* Mode Register Writes (MRW or MRS) */
static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr,
					 uint32_t data)
{
	uint32_t mrctrl0;

	VERBOSE("MRS: %d = %x\n", addr, data);

	/*
	 * 1. Poll MRSTAT.mr_wr_busy until it is '0'.
	 *    This checks that there is no outstanding MR transaction.
	 *    No write should be performed to MRCTRL0 and MRCTRL1
	 *    if MRSTAT.mr_wr_busy = 1.
	 */
	while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
		DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
		;
	}

	/*
	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
	 *    and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
	 */
	mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE |
		  DDRCTRL_MRCTRL0_MR_RANK_ALL |
		  (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) &
		   DDRCTRL_MRCTRL0_MR_ADDR_MASK);
	mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
	VERBOSE("[0x%lx] mrctrl0 = 0x%x (0x%x)\n",
		(uintptr_t)&priv->ctl->mrctrl0,
		mmio_read_32((uintptr_t)&priv->ctl->mrctrl0), mrctrl0);
	mmio_write_32((uintptr_t)&priv->ctl->mrctrl1, data);
	VERBOSE("[0x%lx] mrctrl1 = 0x%x\n",
		(uintptr_t)&priv->ctl->mrctrl1,
		mmio_read_32((uintptr_t)&priv->ctl->mrctrl1));

	/*
	 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This
	 *    bit is self-clearing, and triggers the MR transaction.
	 *    The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
	 *    the MR transaction to SDRAM, and no further access can be
	 *    initiated until it is deasserted.
	 */
	mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR;
	mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);

	while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
	       DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
		;
	}

	VERBOSE("[0x%lx] mrctrl0 = 0x%x\n",
		(uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
}

/* Switch DDR3 from DLL-on to DLL-off */
static void stm32mp1_ddr3_dll_off(struct ddr_info *priv)
{
	uint32_t mr1 = mmio_read_32((uintptr_t)&priv->phy->mr1);
	uint32_t mr2 = mmio_read_32((uintptr_t)&priv->phy->mr2);
	uint32_t dbgcam;

	VERBOSE("mr1: 0x%x\n", mr1);
	VERBOSE("mr2: 0x%x\n", mr2);

	/*
	 * 1. Set the DBG1.dis_hif = 1.
	 *    This prevents further reads/writes being received on the HIF.
	 */
	mmio_setbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
	VERBOSE("[0x%lx] dbg1 = 0x%x\n",
		(uintptr_t)&priv->ctl->dbg1,
		mmio_read_32((uintptr_t)&priv->ctl->dbg1));

	/*
	 * 2. Ensure all commands have been flushed from the uMCTL2 by polling
	 *    DBGCAM.wr_data_pipeline_empty = 1,
	 *    DBGCAM.rd_data_pipeline_empty = 1,
	 *    DBGCAM.dbg_wr_q_depth = 0 ,
	 *    DBGCAM.dbg_lpr_q_depth = 0, and
	 *    DBGCAM.dbg_hpr_q_depth = 0.
	 */
	do {
		dbgcam = mmio_read_32((uintptr_t)&priv->ctl->dbgcam);
		VERBOSE("[0x%lx] dbgcam = 0x%x\n",
			(uintptr_t)&priv->ctl->dbgcam, dbgcam);
	} while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) ==
		   DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) &&
		 ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U));

	/*
	 * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
	 *    to disable RTT_NOM:
	 *    a. DDR3: Write to MR1[9], MR1[6] and MR1[2]
	 *    b. DDR4: Write to MR1[10:8]
	 */
	mr1 &= ~(BIT(9) | BIT(6) | BIT(2));
	stm32mp1_mode_register_write(priv, 1, mr1);

	/*
	 * 4. For DDR4 only: Perform an MRS command
	 *    (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6]
	 *    to disable RTT_PARK
	 */

	/*
	 * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
	 *    to write to MR2[10:9], to disable RTT_WR
	 *    (and therefore disable dynamic ODT).
	 *    This applies for both DDR3 and DDR4.
	 */
	mr2 &= ~GENMASK(10, 9);
	stm32mp1_mode_register_write(priv, 2, mr2);

	/*
	 * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
	 *    to disable the DLL. The timing of this MRS is automatically
	 *    handled by the uMCTL2.
	 *    a. DDR3: Write to MR1[0]
	 *    b. DDR4: Write to MR1[0]
	 */
	mr1 |= BIT(0);
	stm32mp1_mode_register_write(priv, 1, mr1);

	/*
	 * 7. Put the SDRAM into self-refresh mode by setting
	 *    PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure
	 *    the DDRC has entered self-refresh.
	 */
	mmio_setbits_32((uintptr_t)&priv->ctl->pwrctl,
			DDRCTRL_PWRCTL_SELFREF_SW);
	VERBOSE("[0x%lx] pwrctl = 0x%x\n",
		(uintptr_t)&priv->ctl->pwrctl,
		mmio_read_32((uintptr_t)&priv->ctl->pwrctl));

	/*
	 * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the
	 *    DWC_ddr_umctl2 core is in self-refresh mode.
	 *    Ensure transition to self-refresh was due to software
	 *    by checking that STAT.selfref_type[1:0]=2.
	 */
	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR);

	/*
	 * 9. Set the MSTR.dll_off_mode = 1.
	 *    warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field
	 */
	stm32mp1_start_sw_done(priv->ctl);

	mmio_setbits_32((uintptr_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE);
	VERBOSE("[0x%lx] mstr = 0x%x\n",
		(uintptr_t)&priv->ctl->mstr,
		mmio_read_32((uintptr_t)&priv->ctl->mstr));

	stm32mp1_wait_sw_done_ack(priv->ctl);

	/* 10. Change the clock frequency to the desired value. */

	/*
	 * 11. Update any registers which may be required to change for the new
	 *     frequency. This includes static and dynamic registers.
	 *     This includes both uMCTL2 registers and PHY registers.
	 */

	/* Change Bypass Mode Frequency Range */
	if (stm32mp_clk_get_rate(DDRPHYC) < 100000000U) {
		mmio_clrbits_32((uintptr_t)&priv->phy->dllgcr,
				DDRPHYC_DLLGCR_BPS200);
	} else {
		mmio_setbits_32((uintptr_t)&priv->phy->dllgcr,
				DDRPHYC_DLLGCR_BPS200);
	}

	mmio_setbits_32((uintptr_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS);

	mmio_setbits_32((uintptr_t)&priv->phy->dx0dllcr,
			DDRPHYC_DXNDLLCR_DLLDIS);
	mmio_setbits_32((uintptr_t)&priv->phy->dx1dllcr,
			DDRPHYC_DXNDLLCR_DLLDIS);
	mmio_setbits_32((uintptr_t)&priv->phy->dx2dllcr,
			DDRPHYC_DXNDLLCR_DLLDIS);
	mmio_setbits_32((uintptr_t)&priv->phy->dx3dllcr,
			DDRPHYC_DXNDLLCR_DLLDIS);

	/* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
	mmio_clrbits_32((uintptr_t)&priv->ctl->pwrctl,
			DDRCTRL_PWRCTL_SELFREF_SW);
	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);

	/*
	 * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command
	 *     at this point.
	 */

	/*
	 * 14. Perform MRS commands as required to re-program timing registers
	 *     in the SDRAM for the new frequency
	 *     (in particular, CL, CWL and WR may need to be changed).
	 */

	/* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
	mmio_clrbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
	VERBOSE("[0x%lx] dbg1 = 0x%x\n",
		(uintptr_t)&priv->ctl->dbg1,
		mmio_read_32((uintptr_t)&priv->ctl->dbg1));
}

static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
{
	stm32mp1_start_sw_done(ctl);
	/* Quasi-dynamic register update*/
	mmio_setbits_32((uintptr_t)&ctl->rfshctl3,
			DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
	mmio_clrbits_32((uintptr_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
	mmio_clrbits_32((uintptr_t)&ctl->dfimisc,
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	stm32mp1_wait_sw_done_ack(ctl);
}

static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
				     uint32_t rfshctl3, uint32_t pwrctl)
{
	stm32mp1_start_sw_done(ctl);
	if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) {
		mmio_clrbits_32((uintptr_t)&ctl->rfshctl3,
				DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
	}
	if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) {
		mmio_setbits_32((uintptr_t)&ctl->pwrctl,
				DDRCTRL_PWRCTL_POWERDOWN_EN);
	}
	mmio_setbits_32((uintptr_t)&ctl->dfimisc,
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	stm32mp1_wait_sw_done_ack(ctl);
}

static int board_ddr_power_init(enum ddr_type ddr_type)
{
	if (dt_pmic_status() > 0) {
		return pmic_ddr_power_init(ddr_type);
	}

	return 0;
}

void stm32mp1_ddr_init(struct ddr_info *priv,
		       struct stm32mp1_ddr_config *config)
{
	uint32_t pir;
	int ret = -EINVAL;

	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
		ret = board_ddr_power_init(STM32MP_DDR3);
	} else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) != 0U) {
		ret = board_ddr_power_init(STM32MP_LPDDR2);
	} else {
		ERROR("DDR type not supported\n");
	}

	if (ret != 0) {
		panic();
	}

	VERBOSE("name = %s\n", config->info.name);
	VERBOSE("speed = %d kHz\n", config->info.speed);
	VERBOSE("size  = 0x%x\n", config->info.size);

	/* DDR INIT SEQUENCE */

	/*
	 * 1. Program the DWC_ddr_umctl2 registers
	 *     nota: check DFIMISC.dfi_init_complete = 0
	 */

	/* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);

	/* 1.2. start CLOCK */
	if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) {
		panic();
	}

	/* 1.3. deassert reset */
	/* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
	/*
	 * De-assert presetn once the clocks are active
	 * and stable via DDRCAPBRST bit.
	 */
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);

	/* 1.4. wait 128 cycles to permit initialization of end logic */
	udelay(2);
	/* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */

	/* 1.5. initialize registers ddr_umctl2 */
	/* Stop uMCTL2 before PHY is ready */
	mmio_clrbits_32((uintptr_t)&priv->ctl->dfimisc,
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	VERBOSE("[0x%lx] dfimisc = 0x%x\n",
		(uintptr_t)&priv->ctl->dfimisc,
		mmio_read_32((uintptr_t)&priv->ctl->dfimisc));

	set_reg(priv, REG_REG, &config->c_reg);

	/* DDR3 = don't set DLLOFF for init mode */
	if ((config->c_reg.mstr &
	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
		VERBOSE("deactivate DLL OFF in mstr\n");
		mmio_clrbits_32((uintptr_t)&priv->ctl->mstr,
				DDRCTRL_MSTR_DLL_OFF_MODE);
		VERBOSE("[0x%lx] mstr = 0x%x\n",
			(uintptr_t)&priv->ctl->mstr,
			mmio_read_32((uintptr_t)&priv->ctl->mstr));
	}

	set_reg(priv, REG_TIMING, &config->c_timing);
	set_reg(priv, REG_MAP, &config->c_map);

	/* Skip CTRL init, SDRAM init is done by PHY PUBL */
	mmio_clrsetbits_32((uintptr_t)&priv->ctl->init0,
			   DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
			   DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
	VERBOSE("[0x%lx] init0 = 0x%x\n",
		(uintptr_t)&priv->ctl->init0,
		mmio_read_32((uintptr_t)&priv->ctl->init0));

	set_reg(priv, REG_PERF, &config->c_perf);

	/*  2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);

	/*
	 * 3. start PHY init by accessing relevant PUBL registers
	 *    (DXGCR, DCR, PTR*, MR*, DTPR*)
	 */
	set_reg(priv, REGPHY_REG, &config->p_reg);
	set_reg(priv, REGPHY_TIMING, &config->p_timing);
	set_reg(priv, REGPHY_CAL, &config->p_cal);

	/* DDR3 = don't set DLLOFF for init mode */
	if ((config->c_reg.mstr &
	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
		VERBOSE("deactivate DLL OFF in mr1\n");
		mmio_clrbits_32((uintptr_t)&priv->phy->mr1, BIT(0));
		VERBOSE("[0x%lx] mr1 = 0x%x\n",
			(uintptr_t)&priv->phy->mr1,
			mmio_read_32((uintptr_t)&priv->phy->mr1));
	}

	/*
	 *  4. Monitor PHY init status by polling PUBL register PGSR.IDONE
	 *     Perform DDR PHY DRAM initialization and Gate Training Evaluation
	 */
	stm32mp1_ddrphy_idone_wait(priv->phy);

	/*
	 *  5. Indicate to PUBL that controller performs SDRAM initialization
	 *     by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
	 *     DRAM init is done by PHY, init0.skip_dram.init = 1
	 */

	pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
	      DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;

	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
		pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */
	}

	stm32mp1_ddrphy_init(priv->phy, pir);

	/*
	 *  6. SET DFIMISC.dfi_init_complete_en to 1
	 *  Enable quasi-dynamic register programming.
	 */
	stm32mp1_start_sw_done(priv->ctl);

	mmio_setbits_32((uintptr_t)&priv->ctl->dfimisc,
			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
	VERBOSE("[0x%lx] dfimisc = 0x%x\n",
		(uintptr_t)&priv->ctl->dfimisc,
		mmio_read_32((uintptr_t)&priv->ctl->dfimisc));

	stm32mp1_wait_sw_done_ack(priv->ctl);

	/*
	 *  7. Wait for DWC_ddr_umctl2 to move to normal operation mode
	 *     by monitoring STAT.operating_mode signal
	 */

	/* Wait uMCTL2 ready */
	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);

	/* Switch to DLL OFF mode */
	if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) {
		stm32mp1_ddr3_dll_off(priv);
	}

	VERBOSE("DDR DQS training : ");

	/*
	 *  8. Disable Auto refresh and power down by setting
	 *    - RFSHCTL3.dis_au_refresh = 1
	 *    - PWRCTL.powerdown_en = 0
	 *    - DFIMISC.dfiinit_complete_en = 0
	 */
	stm32mp1_refresh_disable(priv->ctl);

	/*
	 *  9. Program PUBL PGCR to enable refresh during training
	 *     and rank to train
	 *     not done => keep the programed value in PGCR
	 */

	/*
	 * 10. configure PUBL PIR register to specify which training step
	 * to run
	 * Warning : RVTRN  is not supported by this PUBL
	 */
	stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);

	/* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
	stm32mp1_ddrphy_idone_wait(priv->phy);

	/*
	 * 12. set back registers in step 8 to the orginal values if desidered
	 */
	stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
				 config->c_reg.pwrctl);

	/* Enable uMCTL2 AXI port 0 */
	mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_0,
			DDRCTRL_PCTRL_N_PORT_EN);
	VERBOSE("[0x%lx] pctrl_0 = 0x%x\n",
		(uintptr_t)&priv->ctl->pctrl_0,
		mmio_read_32((uintptr_t)&priv->ctl->pctrl_0));

	/* Enable uMCTL2 AXI port 1 */
	mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_1,
			DDRCTRL_PCTRL_N_PORT_EN);
	VERBOSE("[0x%lx] pctrl_1 = 0x%x\n",
		(uintptr_t)&priv->ctl->pctrl_1,
		mmio_read_32((uintptr_t)&priv->ctl->pctrl_1));
}