• Soby Mathew's avatar
    Replace build macro WARN_DEPRECATED with ERROR_DEPRECATED · 7a24cba5
    Soby Mathew authored
    This patch changes the build time behaviour when using deprecated API within
    Trusted Firmware. Previously the use of deprecated APIs would only trigger a
    build warning (which was always treated as a build error), when
    WARN_DEPRECATED = 1. Now, the use of deprecated C declarations will always
    trigger a build time warning. Whether this warning is treated as error or not
    is determined by the build flag ERROR_DEPRECATED which is disabled by default.
    When the build flag ERROR_DEPRECATED=1, the invocation of deprecated API or
    inclusion of deprecated headers will result in a build error.
    
    Also the deprecated context management helpers in context_mgmt.c are now
    conditionally compiled depending on the value of ERROR_DEPRECATED flag
    so that the APIs themselves do not result in a build error when the
    ERROR_DEPRECATED flag is set.
    
    NOTE: Build systems that use the macro WARN_DEPRECATED must migrate to
    using ERROR_DEPRECATED, otherwise deprecated API usage will no longer
    trigger a build error.
    
    Change-Id: I843bceef6bde979af7e9b51dddf861035ec7965a
    7a24cba5
context_mgmt.c 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <bl31.h>
#include <context.h>
#include <context_mgmt.h>
#include <cpu_data.h>
#include <interrupt_mgmt.h>
#include <platform.h>
#include <platform_def.h>
#include <runtime_svc.h>
#include <string.h>


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
void cm_init(void)
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

/*******************************************************************************
 * This function returns a pointer to the most recent 'cpu_context' structure
 * for the CPU identified by `cpu_idx` that was set as the context for the
 * specified security state. NULL is returned if no such structure has been
 * specified.
 ******************************************************************************/
void *cm_get_context_by_index(unsigned int cpu_idx,
				unsigned int security_state)
{
	assert(sec_state_is_valid(security_state));

	return get_cpu_data_by_index(cpu_idx, cpu_context[security_state]);
}

/*******************************************************************************
 * This function sets the pointer to the current 'cpu_context' structure for the
 * specified security state for the CPU identified by CPU index.
 ******************************************************************************/
void cm_set_context_by_index(unsigned int cpu_idx, void *context,
				unsigned int security_state)
{
	assert(sec_state_is_valid(security_state));

	set_cpu_data_by_index(cpu_idx, cpu_context[security_state], context);
}

#if !ERROR_DEPRECATED
/*
 * These context management helpers are deprecated but are maintained for use
 * by SPDs which have not migrated to the new API. If ERROR_DEPRECATED
 * is enabled, these are excluded from the build so as to force users to
 * migrate to the new API.
 */

/*******************************************************************************
 * This function returns a pointer to the most recent 'cpu_context' structure
 * for the CPU identified by MPIDR that was set as the context for the specified
 * security state. NULL is returned if no such structure has been specified.
 ******************************************************************************/
void *cm_get_context_by_mpidr(uint64_t mpidr, uint32_t security_state)
{
	assert(sec_state_is_valid(security_state));

	return cm_get_context_by_index(platform_get_core_pos(mpidr), security_state);
}

/*******************************************************************************
 * This function sets the pointer to the current 'cpu_context' structure for the
 * specified security state for the CPU identified by MPIDR
 ******************************************************************************/
void cm_set_context_by_mpidr(uint64_t mpidr, void *context, uint32_t security_state)
{
	assert(sec_state_is_valid(security_state));

	cm_set_context_by_index(platform_get_core_pos(mpidr),
						 context, security_state);
}

/*******************************************************************************
 * The following function provides a compatibility function for SPDs using the
 * existing cm library routines. This function is expected to be invoked for
 * initializing the cpu_context for the CPU specified by MPIDR for first use.
 ******************************************************************************/
void cm_init_context(unsigned long mpidr, const entry_point_info_t *ep)
{
	if ((mpidr & MPIDR_AFFINITY_MASK) ==
			(read_mpidr_el1() & MPIDR_AFFINITY_MASK))
		cm_init_my_context(ep);
	else
		cm_init_context_by_index(platform_get_core_pos(mpidr), ep);
}
#endif

/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
 ******************************************************************************/
static inline void cm_set_next_context(void *context)
{
#if DEBUG
	uint64_t sp_mode;

	/*
	 * Check that this function is called with SP_EL0 as the stack
	 * pointer
	 */
	__asm__ volatile("mrs	%0, SPSel\n"
			 : "=r" (sp_mode));

	assert(sp_mode == MODE_SP_EL0);
#endif

	__asm__ volatile("msr	spsel, #1\n"
			 "mov	sp, %0\n"
			 "msr	spsel, #0\n"
			 : : "r" (context));
}

/*******************************************************************************
 * The following function initializes the cpu_context 'ctx' for
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
 * of the entry_point_info. The function returns a pointer to the initialized
 * context and sets this as the next context to return to.
 *
 * The EE and ST attributes are used to configure the endianess and secure
 * timer availability for the new execution context.
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
{
	unsigned int security_state;
	uint32_t scr_el3;
	el3_state_t *state;
	gp_regs_t *gp_regs;
	unsigned long sctlr_elx;

	assert(ctx);

	security_state = GET_SECURITY_STATE(ep->h.attr);

	/* Clear any residual register values from the context */
	memset(ctx, 0, sizeof(*ctx));

	/*
	 * Base the context SCR on the current value, adjust for entry point
	 * specific requirements and set trap bits from the IMF
	 * TODO: provide the base/global SCR bits using another mechanism?
	 */
	scr_el3 = read_scr();
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);

	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;

	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;

	if (EP_GET_ST(ep->h.attr))
		scr_el3 |= SCR_ST_BIT;

	scr_el3 |= get_scr_el3_from_routing_model(security_state);

	/*
	 * Set up SCTLR_ELx for the target exception level:
	 * EE bit is taken from the entrpoint attributes
	 * M, C and I bits must be zero (as required by PSCI specification)
	 *
	 * The target exception level is based on the spsr mode requested.
	 * If execution is requested to EL2 or hyp mode, HVC is enabled
	 * via SCR_EL3.HCE.
	 *
	 * Always compute the SCTLR_EL1 value and save in the cpu_context
	 * - the EL2 registers are set up by cm_preapre_ns_entry() as they
	 * are not part of the stored cpu_context
	 *
	 * TODO: In debug builds the spsr should be validated and checked
	 * against the CPU support, security state, endianess and pc
	 */
	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
	else
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

	if ((GET_RW(ep->spsr) == MODE_RW_64
	     && GET_EL(ep->spsr) == MODE_EL2)
	    || (GET_RW(ep->spsr) != MODE_RW_64
		&& GET_M32(ep->spsr) == MODE32_hyp)) {
		scr_el3 |= SCR_HCE_BIT;
	}

	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
	uint32_t sctlr_elx, scr_el3, cptr_el2;
	cpu_context_t *ctx = cm_get_context(security_state);

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
		if (scr_el3 & SCR_HCE_BIT) {
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
						 CTX_SCTLR_EL1);
			sctlr_elx &= ~SCTLR_EE_BIT;
			sctlr_elx |= SCTLR_EL2_RES1;
			write_sctlr_el2(sctlr_elx);
		} else if (read_id_aa64pfr0_el1() &
			   (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
			/* EL2 present but unused, need to disable safely */

			/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);

			/* SCTLR_EL2 : can be ignored when bypassing */

			/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
			cptr_el2 = read_cptr_el2();
			cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
			write_cptr_el2(cptr_el2);

			/* Enable EL1 access to timer */
			write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);

			/* Reset CNTVOFF_EL2 */
			write_cntvoff_el2(0);

			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
		}
	}

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));

	cm_set_next_context(ctx);
}

/*******************************************************************************
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
	cpu_context_t *ctx;

	ctx = cm_get_context(security_state);
	assert(ctx);

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
	cpu_context_t *ctx;

	ctx = cm_get_context(security_state);
	assert(ctx);

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
}

/*******************************************************************************
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
 ******************************************************************************/
void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint)
{
	cpu_context_t *ctx;
	el3_state_t *state;

	ctx = cm_get_context(security_state);
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

/*******************************************************************************
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
 ******************************************************************************/
void cm_set_elr_spsr_el3(uint32_t security_state,
			 uint64_t entrypoint, uint32_t spsr)
{
	cpu_context_t *ctx;
	el3_state_t *state;

	ctx = cm_get_context(security_state);
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
}

/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

	ctx = cm_get_context(security_state);
	assert(ctx);

	/* Ensure that the bit position is a valid one */
	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);

	/* Ensure that the 'value' is only a bit wide */
	assert(value <= 1);

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1 << bit_pos);
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

	ctx = cm_get_context(security_state);
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	return read_ctx_reg(state, CTX_SCR_EL3);
}

/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
	cpu_context_t *ctx;

	ctx = cm_get_context(security_state);
	assert(ctx);

	cm_set_next_context(ctx);
}