ehf.c 15.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

/*
 * Exception handlers at EL3, their priority levels, and management.
 */

#include <assert.h>
#include <stdbool.h>

#include <bl31/ehf.h>
#include <bl31/interrupt_mgmt.h>
#include <context.h>
#include <common/debug.h>
#include <drivers/arm/gic_common.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/el3_runtime/cpu_data.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <plat/common/platform.h>

/* Output EHF logs as verbose */
#define EHF_LOG(...)	VERBOSE("EHF: " __VA_ARGS__)

#define EHF_INVALID_IDX	(-1)

/* For a valid handler, return the actual function pointer; otherwise, 0. */
#define RAW_HANDLER(h) \
	((ehf_handler_t) ((((h) & EHF_PRI_VALID_) != 0U) ? \
		((h) & ~EHF_PRI_VALID_) : 0U))

#define PRI_BIT(idx)	(((ehf_pri_bits_t) 1u) << (idx))

/*
 * Convert index into secure priority using the platform-defined priority bits
 * field.
 */
#define IDX_TO_PRI(idx) \
	((((unsigned) idx) << (7u - exception_data.pri_bits)) & 0x7fU)

/* Check whether a given index is valid */
#define IS_IDX_VALID(idx) \
	((exception_data.ehf_priorities[idx].ehf_handler & EHF_PRI_VALID_) != 0U)

/* Returns whether given priority is in secure priority range */
#define IS_PRI_SECURE(pri)	(((pri) & 0x80U) == 0U)

/* To be defined by the platform */
extern const ehf_priorities_t exception_data;

/* Translate priority to the index in the priority array */
static unsigned int pri_to_idx(unsigned int priority)
{
	unsigned int idx;

	idx = EHF_PRI_TO_IDX(priority, exception_data.pri_bits);
	assert(idx < exception_data.num_priorities);
	assert(IS_IDX_VALID(idx));

	return idx;
}

/* Return whether there are outstanding priority activation */
static bool has_valid_pri_activations(pe_exc_data_t *pe_data)
{
	return pe_data->active_pri_bits != 0U;
}

static pe_exc_data_t *this_cpu_data(void)
{
	return &get_cpu_data(ehf_data);
}

/*
 * Return the current priority index of this CPU. If no priority is active,
 * return EHF_INVALID_IDX.
 */
static int get_pe_highest_active_idx(pe_exc_data_t *pe_data)
{
	if (!has_valid_pri_activations(pe_data))
		return EHF_INVALID_IDX;

	/* Current priority is the right-most bit */
	return (int) __builtin_ctz(pe_data->active_pri_bits);
}

/*
 * Mark priority active by setting the corresponding bit in active_pri_bits and
 * programming the priority mask.
 *
 * This API is to be used as part of delegating to lower ELs other than for
 * interrupts; e.g. while handling synchronous exceptions.
 *
 * This API is expected to be invoked before restoring context (Secure or
 * Non-secure) in preparation for the respective dispatch.
 */
void ehf_activate_priority(unsigned int priority)
{
	int cur_pri_idx;
	unsigned int old_mask, run_pri, idx;
	pe_exc_data_t *pe_data = this_cpu_data();

	/*
	 * Query interrupt controller for the running priority, or idle priority
	 * if no interrupts are being handled. The requested priority must be
	 * less (higher priority) than the active running priority.
	 */
	run_pri = plat_ic_get_running_priority();
	if (priority >= run_pri) {
		ERROR("Running priority higher (0x%x) than requested (0x%x)\n",
				run_pri, priority);
		panic();
	}

	/*
	 * If there were priority activations already, the requested priority
	 * must be less (higher priority) than the current highest priority
	 * activation so far.
	 */
	cur_pri_idx = get_pe_highest_active_idx(pe_data);
	idx = pri_to_idx(priority);
	if ((cur_pri_idx != EHF_INVALID_IDX) &&
			(idx >= ((unsigned int) cur_pri_idx))) {
		ERROR("Activation priority mismatch: req=0x%x current=0x%x\n",
				priority, IDX_TO_PRI(cur_pri_idx));
		panic();
	}

	/* Set the bit corresponding to the requested priority */
	pe_data->active_pri_bits |= PRI_BIT(idx);

	/*
	 * Program priority mask for the activated level. Check that the new
	 * priority mask is setting a higher priority level than the existing
	 * mask.
	 */
	old_mask = plat_ic_set_priority_mask(priority);
	if (priority >= old_mask) {
		ERROR("Requested priority (0x%x) lower than Priority Mask (0x%x)\n",
				priority, old_mask);
		panic();
	}

	/*
	 * If this is the first activation, save the priority mask. This will be
	 * restored after the last deactivation.
	 */
	if (cur_pri_idx == EHF_INVALID_IDX)
		pe_data->init_pri_mask = (uint8_t) old_mask;

	EHF_LOG("activate prio=%d\n", get_pe_highest_active_idx(pe_data));
}

/*
 * Mark priority inactive by clearing the corresponding bit in active_pri_bits,
 * and programming the priority mask.
 *
 * This API is expected to be used as part of delegating to to lower ELs other
 * than for interrupts; e.g. while handling synchronous exceptions.
 *
 * This API is expected to be invoked after saving context (Secure or
 * Non-secure), having concluded the respective dispatch.
 */
void ehf_deactivate_priority(unsigned int priority)
{
	int cur_pri_idx;
	pe_exc_data_t *pe_data = this_cpu_data();
	unsigned int old_mask, run_pri, idx;

	/*
	 * Query interrupt controller for the running priority, or idle priority
	 * if no interrupts are being handled. The requested priority must be
	 * less (higher priority) than the active running priority.
	 */
	run_pri = plat_ic_get_running_priority();
	if (priority >= run_pri) {
		ERROR("Running priority higher (0x%x) than requested (0x%x)\n",
				run_pri, priority);
		panic();
	}

	/*
	 * Deactivation is allowed only when there are priority activations, and
	 * the deactivation priority level must match the current activated
	 * priority.
	 */
	cur_pri_idx = get_pe_highest_active_idx(pe_data);
	idx = pri_to_idx(priority);
	if ((cur_pri_idx == EHF_INVALID_IDX) ||
			(idx != ((unsigned int) cur_pri_idx))) {
		ERROR("Deactivation priority mismatch: req=0x%x current=0x%x\n",
				priority, IDX_TO_PRI(cur_pri_idx));
		panic();
	}

	/* Clear bit corresponding to highest priority */
	pe_data->active_pri_bits &= (pe_data->active_pri_bits - 1u);

	/*
	 * Restore priority mask corresponding to the next priority, or the
	 * one stashed earlier if there are no more to deactivate.
	 */
	cur_pri_idx = get_pe_highest_active_idx(pe_data);
	if (cur_pri_idx == EHF_INVALID_IDX)
		old_mask = plat_ic_set_priority_mask(pe_data->init_pri_mask);
	else
		old_mask = plat_ic_set_priority_mask(priority);

	if (old_mask > priority) {
		ERROR("Deactivation priority (0x%x) lower than Priority Mask (0x%x)\n",
				priority, old_mask);
		panic();
	}

	EHF_LOG("deactivate prio=%d\n", get_pe_highest_active_idx(pe_data));
}

/*
 * After leaving Non-secure world, stash current Non-secure Priority Mask, and
 * set Priority Mask to the highest Non-secure priority so that Non-secure
 * interrupts cannot preempt Secure execution.
 *
 * If the current running priority is in the secure range, or if there are
 * outstanding priority activations, this function does nothing.
 *
 * This function subscribes to the 'cm_exited_normal_world' event published by
 * the Context Management Library.
 */
static void *ehf_exited_normal_world(const void *arg)
{
	unsigned int run_pri;
	pe_exc_data_t *pe_data = this_cpu_data();

	/* If the running priority is in the secure range, do nothing */
	run_pri = plat_ic_get_running_priority();
	if (IS_PRI_SECURE(run_pri))
		return NULL;

	/* Do nothing if there are explicit activations */
	if (has_valid_pri_activations(pe_data))
		return NULL;

	assert(pe_data->ns_pri_mask == 0u);

	pe_data->ns_pri_mask =
		(uint8_t) plat_ic_set_priority_mask(GIC_HIGHEST_NS_PRIORITY);

	/* The previous Priority Mask is not expected to be in secure range */
	if (IS_PRI_SECURE(pe_data->ns_pri_mask)) {
		ERROR("Priority Mask (0x%x) already in secure range\n",
				pe_data->ns_pri_mask);
		panic();
	}

	EHF_LOG("Priority Mask: 0x%x => 0x%x\n", pe_data->ns_pri_mask,
			GIC_HIGHEST_NS_PRIORITY);

	return NULL;
}

/*
 * Conclude Secure execution and prepare for return to Non-secure world. Restore
 * the Non-secure Priority Mask previously stashed upon leaving Non-secure
 * world.
 *
 * If there the current running priority is in the secure range, or if there are
 * outstanding priority activations, this function does nothing.
 *
 * This function subscribes to the 'cm_entering_normal_world' event published by
 * the Context Management Library.
 */
static void *ehf_entering_normal_world(const void *arg)
{
	unsigned int old_pmr, run_pri;
	pe_exc_data_t *pe_data = this_cpu_data();

	/* If the running priority is in the secure range, do nothing */
	run_pri = plat_ic_get_running_priority();
	if (IS_PRI_SECURE(run_pri))
		return NULL;

	/*
	 * If there are explicit activations, do nothing. The Priority Mask will
	 * be restored upon the last deactivation.
	 */
	if (has_valid_pri_activations(pe_data))
		return NULL;

	/* Do nothing if we don't have a valid Priority Mask to restore */
	if (pe_data->ns_pri_mask == 0U)
		return NULL;

	old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask);

	/*
	 * When exiting secure world, the current Priority Mask must be
	 * GIC_HIGHEST_NS_PRIORITY (as set during entry), or the Non-secure
	 * priority mask set upon calling ehf_allow_ns_preemption()
	 */
	if ((old_pmr != GIC_HIGHEST_NS_PRIORITY) &&
			(old_pmr != pe_data->ns_pri_mask)) {
		ERROR("Invalid Priority Mask (0x%x) restored\n", old_pmr);
		panic();
	}

	EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask);

	pe_data->ns_pri_mask = 0;

	return NULL;
}

/*
 * Program Priority Mask to the original Non-secure priority such that
 * Non-secure interrupts may preempt Secure execution (for example, during
 * Yielding SMC calls). The 'preempt_ret_code' parameter indicates the Yielding
 * SMC's return value in case the call was preempted.
 *
 * This API is expected to be invoked before delegating a yielding SMC to Secure
 * EL1. I.e. within the window of secure execution after Non-secure context is
 * saved (after entry into EL3) and Secure context is restored (before entering
 * Secure EL1).
 */
void ehf_allow_ns_preemption(uint64_t preempt_ret_code)
{
	cpu_context_t *ns_ctx;
	unsigned int old_pmr __unused;
	pe_exc_data_t *pe_data = this_cpu_data();

	/*
	 * We should have been notified earlier of entering secure world, and
	 * therefore have stashed the Non-secure priority mask.
	 */
	assert(pe_data->ns_pri_mask != 0U);

	/* Make sure no priority levels are active when requesting this */
	if (has_valid_pri_activations(pe_data)) {
		ERROR("PE %lx has priority activations: 0x%x\n",
				read_mpidr_el1(), pe_data->active_pri_bits);
		panic();
	}

	/*
	 * Program preempted return code to x0 right away so that, if the
	 * Yielding SMC was indeed preempted before a dispatcher gets a chance
	 * to populate it, the caller would find the correct return value.
	 */
	ns_ctx = cm_get_context(NON_SECURE);
	assert(ns_ctx != NULL);
	write_ctx_reg(get_gpregs_ctx(ns_ctx), CTX_GPREG_X0, preempt_ret_code);

	old_pmr = plat_ic_set_priority_mask(pe_data->ns_pri_mask);

	EHF_LOG("Priority Mask: 0x%x => 0x%x\n", old_pmr, pe_data->ns_pri_mask);

	pe_data->ns_pri_mask = 0;
}

/*
 * Return whether Secure execution has explicitly allowed Non-secure interrupts
 * to preempt itself (for example, during Yielding SMC calls).
 */
unsigned int ehf_is_ns_preemption_allowed(void)
{
	unsigned int run_pri;
	pe_exc_data_t *pe_data = this_cpu_data();

	/* If running priority is in secure range, return false */
	run_pri = plat_ic_get_running_priority();
	if (IS_PRI_SECURE(run_pri))
		return 0;

	/*
	 * If Non-secure preemption was permitted by calling
	 * ehf_allow_ns_preemption() earlier:
	 *
	 * - There wouldn't have been priority activations;
	 * - We would have cleared the stashed the Non-secure Priority Mask.
	 */
	if (has_valid_pri_activations(pe_data))
		return 0;
	if (pe_data->ns_pri_mask != 0U)
		return 0;

	return 1;
}

/*
 * Top-level EL3 interrupt handler.
 */
static uint64_t ehf_el3_interrupt_handler(uint32_t id, uint32_t flags,
		void *handle, void *cookie)
{
	int ret = 0;
	uint32_t intr_raw;
	unsigned int intr, pri, idx;
	ehf_handler_t handler;

	/*
	 * Top-level interrupt type handler from Interrupt Management Framework
	 * doesn't acknowledge the interrupt; so the interrupt ID must be
	 * invalid.
	 */
	assert(id == INTR_ID_UNAVAILABLE);

	/*
	 * Acknowledge interrupt. Proceed with handling only for valid interrupt
	 * IDs. This situation may arise because of Interrupt Management
	 * Framework identifying an EL3 interrupt, but before it's been
	 * acknowledged here, the interrupt was either deasserted, or there was
	 * a higher-priority interrupt of another type.
	 */
	intr_raw = plat_ic_acknowledge_interrupt();
	intr = plat_ic_get_interrupt_id(intr_raw);
	if (intr == INTR_ID_UNAVAILABLE)
		return 0;

	/* Having acknowledged the interrupt, get the running priority */
	pri = plat_ic_get_running_priority();

	/* Check EL3 interrupt priority is in secure range */
	assert(IS_PRI_SECURE(pri));

	/*
	 * Translate the priority to a descriptor index. We do this by masking
	 * and shifting the running priority value (platform-supplied).
	 */
	idx = pri_to_idx(pri);

	/* Validate priority */
	assert(pri == IDX_TO_PRI(idx));

	handler = (ehf_handler_t) RAW_HANDLER(
			exception_data.ehf_priorities[idx].ehf_handler);
	if (handler == NULL) {
		ERROR("No EL3 exception handler for priority 0x%x\n",
				IDX_TO_PRI(idx));
		panic();
	}

	/*
	 * Call registered handler. Pass the raw interrupt value to registered
	 * handlers.
	 */
	ret = handler(intr_raw, flags, handle, cookie);

	return (uint64_t) ret;
}

/*
 * Initialize the EL3 exception handling.
 */
void __init ehf_init(void)
{
	unsigned int flags = 0;
	int ret __unused;

	/* Ensure EL3 interrupts are supported */
	assert(plat_ic_has_interrupt_type(INTR_TYPE_EL3) != 0);

	/*
	 * Make sure that priority water mark has enough bits to represent the
	 * whole priority array.
	 */
	assert(exception_data.num_priorities <= (sizeof(ehf_pri_bits_t) * 8U));

	assert(exception_data.ehf_priorities != NULL);

	/*
	 * Bit 7 of GIC priority must be 0 for secure interrupts. This means
	 * platforms must use at least 1 of the remaining 7 bits.
	 */
	assert((exception_data.pri_bits >= 1U) ||
			(exception_data.pri_bits < 8U));

	/* Route EL3 interrupts when in Secure and Non-secure. */
	set_interrupt_rm_flag(flags, NON_SECURE);
	set_interrupt_rm_flag(flags, SECURE);

	/* Register handler for EL3 interrupts */
	ret = register_interrupt_type_handler(INTR_TYPE_EL3,
			ehf_el3_interrupt_handler, flags);
	assert(ret == 0);
}

/*
 * Register a handler at the supplied priority. Registration is allowed only if
 * a handler hasn't been registered before, or one wasn't provided at build
 * time. The priority for which the handler is being registered must also accord
 * with the platform-supplied data.
 */
void ehf_register_priority_handler(unsigned int pri, ehf_handler_t handler)
{
	unsigned int idx;

	/* Sanity check for handler */
	assert(handler != NULL);

	/* Handler ought to be 4-byte aligned */
	assert((((uintptr_t) handler) & 3U) == 0U);

	/* Ensure we register for valid priority */
	idx = pri_to_idx(pri);
	assert(idx < exception_data.num_priorities);
	assert(IDX_TO_PRI(idx) == pri);

	/* Return failure if a handler was already registered */
	if (exception_data.ehf_priorities[idx].ehf_handler != EHF_NO_HANDLER_) {
		ERROR("Handler already registered for priority 0x%x\n", pri);
		panic();
	}

	/*
	 * Install handler, and retain the valid bit. We assume that the handler
	 * is 4-byte aligned, which is usually the case.
	 */
	exception_data.ehf_priorities[idx].ehf_handler =
		(((uintptr_t) handler) | EHF_PRI_VALID_);

	EHF_LOG("register pri=0x%x handler=%p\n", pri, handler);
}

SUBSCRIBE_TO_EVENT(cm_entering_normal_world, ehf_entering_normal_world);
SUBSCRIBE_TO_EVENT(cm_exited_normal_world, ehf_exited_normal_world);