psci_common.c 34.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/*
 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>
#include <string.h>

#include <arch.h>
#include <arch_helpers.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <context.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/utils.h>
#include <plat/common/platform.h>

#include "psci_private.h"

/*
 * SPD power management operations, expected to be supplied by the registered
 * SPD on successful SP initialization
 */
const spd_pm_ops_t *psci_spd_pm;

/*
 * PSCI requested local power state map. This array is used to store the local
 * power states requested by a CPU for power levels from level 1 to
 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
 * CPU are the same.
 *
 * During state coordination, the platform is passed an array containing the
 * local states requested for a particular non cpu power domain by each cpu
 * within the domain.
 *
 * TODO: Dense packing of the requested states will cause cache thrashing
 * when multiple power domains write to it. If we allocate the requested
 * states at each power level in a cache-line aligned per-domain memory,
 * the cache thrashing can be avoided.
 */
static plat_local_state_t
	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];


/*******************************************************************************
 * Arrays that hold the platform's power domain tree information for state
 * management of power domains.
 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
 * which is an ancestor of a CPU power domain.
 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
 ******************************************************************************/
non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
#if USE_COHERENT_MEM
__section("tzfw_coherent_mem")
#endif
;

/* Lock for PSCI state coordination */
DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);

cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];

/*******************************************************************************
 * Pointer to functions exported by the platform to complete power mgmt. ops
 ******************************************************************************/
const plat_psci_ops_t *psci_plat_pm_ops;

/******************************************************************************
 * Check that the maximum power level supported by the platform makes sense
 *****************************************************************************/
CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
	assert_platform_max_pwrlvl_check);

/*
 * The plat_local_state used by the platform is one of these types: RUN,
 * RETENTION and OFF. The platform can define further sub-states for each type
 * apart from RUN. This categorization is done to verify the sanity of the
 * psci_power_state passed by the platform and to print debug information. The
 * categorization is done on the basis of the following conditions:
 *
 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
 *
 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
 *    STATE_TYPE_RETN.
 *
 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
 *    STATE_TYPE_OFF.
 */
typedef enum plat_local_state_type {
	STATE_TYPE_RUN = 0,
	STATE_TYPE_RETN,
	STATE_TYPE_OFF
} plat_local_state_type_t;

/* Function used to categorize plat_local_state. */
static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
{
	if (state != 0U) {
		if (state > PLAT_MAX_RET_STATE) {
			return STATE_TYPE_OFF;
		} else {
			return STATE_TYPE_RETN;
		}
	} else {
		return STATE_TYPE_RUN;
	}
}

/******************************************************************************
 * Check that the maximum retention level supported by the platform is less
 * than the maximum off level.
 *****************************************************************************/
CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
		assert_platform_max_off_and_retn_state_check);

/******************************************************************************
 * This function ensures that the power state parameter in a CPU_SUSPEND request
 * is valid. If so, it returns the requested states for each power level.
 *****************************************************************************/
int psci_validate_power_state(unsigned int power_state,
			      psci_power_state_t *state_info)
{
	/* Check SBZ bits in power state are zero */
	if (psci_check_power_state(power_state) != 0U)
		return PSCI_E_INVALID_PARAMS;

	assert(psci_plat_pm_ops->validate_power_state != NULL);

	/* Validate the power_state using platform pm_ops */
	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
}

/******************************************************************************
 * This function retrieves the `psci_power_state_t` for system suspend from
 * the platform.
 *****************************************************************************/
void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
{
	/*
	 * Assert that the required pm_ops hook is implemented to ensure that
	 * the capability detected during psci_setup() is valid.
	 */
	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);

	/*
	 * Query the platform for the power_state required for system suspend
	 */
	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
}

/*******************************************************************************
 * This function verifies that the all the other cores in the system have been
 * turned OFF and the current CPU is the last running CPU in the system.
 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
 * otherwise.
 ******************************************************************************/
unsigned int psci_is_last_on_cpu(void)
{
	int cpu_idx, my_idx = (int) plat_my_core_pos();

	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
		if (cpu_idx == my_idx) {
			assert(psci_get_aff_info_state() == AFF_STATE_ON);
			continue;
		}

		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
			return 0;
	}

	return 1;
}

/*******************************************************************************
 * Routine to return the maximum power level to traverse to after a cpu has
 * been physically powered up. It is expected to be called immediately after
 * reset from assembler code.
 ******************************************************************************/
static unsigned int get_power_on_target_pwrlvl(void)
{
	unsigned int pwrlvl;

	/*
	 * Assume that this cpu was suspended and retrieve its target power
	 * level. If it is invalid then it could only have been turned off
	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
	 * cpu can be turned off to.
	 */
	pwrlvl = psci_get_suspend_pwrlvl();
	if (pwrlvl == PSCI_INVALID_PWR_LVL)
		pwrlvl = PLAT_MAX_PWR_LVL;
	return pwrlvl;
}

/******************************************************************************
 * Helper function to update the requested local power state array. This array
 * does not store the requested state for the CPU power level. Hence an
 * assertion is added to prevent us from accessing the CPU power level.
 *****************************************************************************/
static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
					 unsigned int cpu_idx,
					 plat_local_state_t req_pwr_state)
{
	assert(pwrlvl > PSCI_CPU_PWR_LVL);
	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
			(cpu_idx < PLATFORM_CORE_COUNT)) {
		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
	}
}

/******************************************************************************
 * This function initializes the psci_req_local_pwr_states.
 *****************************************************************************/
void __init psci_init_req_local_pwr_states(void)
{
	/* Initialize the requested state of all non CPU power domains as OFF */
	unsigned int pwrlvl;
	int core;

	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
		for (core = 0; core < PLATFORM_CORE_COUNT; core++) {
			psci_req_local_pwr_states[pwrlvl][core] =
				PLAT_MAX_OFF_STATE;
		}
	}
}

/******************************************************************************
 * Helper function to return a reference to an array containing the local power
 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
 * array will be the number of cpu power domains of which this power domain is
 * an ancestor. These requested states will be used to determine a suitable
 * target state for this power domain during psci state coordination. An
 * assertion is added to prevent us from accessing the CPU power level.
 *****************************************************************************/
static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
							 int cpu_idx)
{
	assert(pwrlvl > PSCI_CPU_PWR_LVL);

	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
			(cpu_idx < PLATFORM_CORE_COUNT)) {
		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
	} else
		return NULL;
}

/*
 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
 * memory.
 *
 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
 * it's accessed by both cached and non-cached participants. To serve the common
 * minimum, perform a cache flush before read and after write so that non-cached
 * participants operate on latest data in main memory.
 *
 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
 * In both cases, no cache operations are required.
 */

/*
 * Retrieve local state of non-CPU power domain node from a non-cached CPU,
 * after any required cache maintenance operation.
 */
static plat_local_state_t get_non_cpu_pd_node_local_state(
		unsigned int parent_idx)
{
#if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
	flush_dcache_range(
			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
	return psci_non_cpu_pd_nodes[parent_idx].local_state;
}

/*
 * Update local state of non-CPU power domain node from a cached CPU; perform
 * any required cache maintenance operation afterwards.
 */
static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
		plat_local_state_t state)
{
	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
#if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
	flush_dcache_range(
			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
}

/******************************************************************************
 * Helper function to return the current local power state of each power domain
 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
 * function will be called after a cpu is powered on to find the local state
 * each power domain has emerged from.
 *****************************************************************************/
void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
				      psci_power_state_t *target_state)
{
	unsigned int parent_idx, lvl;
	plat_local_state_t *pd_state = target_state->pwr_domain_state;

	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;

	/* Copy the local power state from node to state_info */
	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}

	/* Set the the higher levels to RUN */
	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
}

/******************************************************************************
 * Helper function to set the target local power state that each power domain
 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
 * enter. This function will be called after coordination of requested power
 * states has been done for each power level.
 *****************************************************************************/
static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
					const psci_power_state_t *target_state)
{
	unsigned int parent_idx, lvl;
	const plat_local_state_t *pd_state = target_state->pwr_domain_state;

	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);

	/*
	 * Need to flush as local_state might be accessed with Data Cache
	 * disabled during power on
	 */
	psci_flush_cpu_data(psci_svc_cpu_data.local_state);

	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;

	/* Copy the local_state from state_info */
	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}
}


/*******************************************************************************
 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
 ******************************************************************************/
void psci_get_parent_pwr_domain_nodes(int cpu_idx,
				      unsigned int end_lvl,
				      unsigned int *node_index)
{
	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
	unsigned int i;
	unsigned int *node = node_index;

	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
		*node = parent_node;
		node++;
		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
	}
}

/******************************************************************************
 * This function is invoked post CPU power up and initialization. It sets the
 * affinity info state, target power state and requested power state for the
 * current CPU and all its ancestor power domains to RUN.
 *****************************************************************************/
void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
{
	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;

	/* Reset the local_state to RUN for the non cpu power domains. */
	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
		set_non_cpu_pd_node_local_state(parent_idx,
				PSCI_LOCAL_STATE_RUN);
		psci_set_req_local_pwr_state(lvl,
					     cpu_idx,
					     PSCI_LOCAL_STATE_RUN);
		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}

	/* Set the affinity info state to ON */
	psci_set_aff_info_state(AFF_STATE_ON);

	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
	psci_flush_cpu_data(psci_svc_cpu_data);
}

/******************************************************************************
 * This function is passed the local power states requested for each power
 * domain (state_info) between the current CPU domain and its ancestors until
 * the target power level (end_pwrlvl). It updates the array of requested power
 * states with this information.
 *
 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
 * retrieves the states requested by all the cpus of which the power domain at
 * that level is an ancestor. It passes this information to the platform to
 * coordinate and return the target power state. If the target state for a level
 * is RUN then subsequent levels are not considered. At the CPU level, state
 * coordination is not required. Hence, the requested and the target states are
 * the same.
 *
 * The 'state_info' is updated with the target state for each level between the
 * CPU and the 'end_pwrlvl' and returned to the caller.
 *
 * This function will only be invoked with data cache enabled and while
 * powering down a core.
 *****************************************************************************/
void psci_do_state_coordination(unsigned int end_pwrlvl,
				psci_power_state_t *state_info)
{
	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
	int start_idx;
	unsigned int ncpus;
	plat_local_state_t target_state, *req_states;

	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;

	/* For level 0, the requested state will be equivalent
	   to target state */
	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {

		/* First update the requested power state */
		psci_set_req_local_pwr_state(lvl, cpu_idx,
					     state_info->pwr_domain_state[lvl]);

		/* Get the requested power states for this power level */
		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
		req_states = psci_get_req_local_pwr_states(lvl, start_idx);

		/*
		 * Let the platform coordinate amongst the requested states at
		 * this power level and return the target local power state.
		 */
		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
		target_state = plat_get_target_pwr_state(lvl,
							 req_states,
							 ncpus);

		state_info->pwr_domain_state[lvl] = target_state;

		/* Break early if the negotiated target power state is RUN */
		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
			break;

		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
	}

	/*
	 * This is for cases when we break out of the above loop early because
	 * the target power state is RUN at a power level < end_pwlvl.
	 * We update the requested power state from state_info and then
	 * set the target state as RUN.
	 */
	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
		psci_set_req_local_pwr_state(lvl, cpu_idx,
					     state_info->pwr_domain_state[lvl]);
		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;

	}

	/* Update the target state in the power domain nodes */
	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
}

/******************************************************************************
 * This function validates a suspend request by making sure that if a standby
 * state is requested then no power level is turned off and the highest power
 * level is placed in a standby/retention state.
 *
 * It also ensures that the state level X will enter is not shallower than the
 * state level X + 1 will enter.
 *
 * This validation will be enabled only for DEBUG builds as the platform is
 * expected to perform these validations as well.
 *****************************************************************************/
int psci_validate_suspend_req(const psci_power_state_t *state_info,
			      unsigned int is_power_down_state)
{
	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
	plat_local_state_t state;
	plat_local_state_type_t req_state_type, deepest_state_type;
	int i;

	/* Find the target suspend power level */
	target_lvl = psci_find_target_suspend_lvl(state_info);
	if (target_lvl == PSCI_INVALID_PWR_LVL)
		return PSCI_E_INVALID_PARAMS;

	/* All power domain levels are in a RUN state to begin with */
	deepest_state_type = STATE_TYPE_RUN;

	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
		state = state_info->pwr_domain_state[i];
		req_state_type = find_local_state_type(state);

		/*
		 * While traversing from the highest power level to the lowest,
		 * the state requested for lower levels has to be the same or
		 * deeper i.e. equal to or greater than the state at the higher
		 * levels. If this condition is true, then the requested state
		 * becomes the deepest state encountered so far.
		 */
		if (req_state_type < deepest_state_type)
			return PSCI_E_INVALID_PARAMS;
		deepest_state_type = req_state_type;
	}

	/* Find the highest off power level */
	max_off_lvl = psci_find_max_off_lvl(state_info);

	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
	max_retn_lvl = PSCI_INVALID_PWR_LVL;
	if (target_lvl != max_off_lvl)
		max_retn_lvl = target_lvl;

	/*
	 * If this is not a request for a power down state then max off level
	 * has to be invalid and max retention level has to be a valid power
	 * level.
	 */
	if ((is_power_down_state == 0U) &&
			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
		return PSCI_E_INVALID_PARAMS;

	return PSCI_E_SUCCESS;
}

/******************************************************************************
 * This function finds the highest power level which will be powered down
 * amongst all the power levels specified in the 'state_info' structure
 *****************************************************************************/
unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
{
	int i;

	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
			return (unsigned int) i;
	}

	return PSCI_INVALID_PWR_LVL;
}

/******************************************************************************
 * This functions finds the level of the highest power domain which will be
 * placed in a low power state during a suspend operation.
 *****************************************************************************/
unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
{
	int i;

	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
			return (unsigned int) i;
	}

	return PSCI_INVALID_PWR_LVL;
}

/*******************************************************************************
 * This function is passed the highest level in the topology tree that the
 * operation should be applied to and a list of node indexes. It picks up locks
 * from the node index list in order of increasing power domain level in the
 * range specified.
 ******************************************************************************/
void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
				   const unsigned int *parent_nodes)
{
	unsigned int parent_idx;
	unsigned int level;

	/* No locking required for level 0. Hence start locking from level 1 */
	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
		parent_idx = parent_nodes[level - 1U];
		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
	}
}

/*******************************************************************************
 * This function is passed the highest level in the topology tree that the
 * operation should be applied to and a list of node indexes. It releases the
 * locks in order of decreasing power domain level in the range specified.
 ******************************************************************************/
void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
				   const unsigned int *parent_nodes)
{
	unsigned int parent_idx;
	unsigned int level;

	/* Unlock top down. No unlocking required for level 0. */
	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) {
		parent_idx = parent_nodes[level - 1U];
		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
	}
}

/*******************************************************************************
 * Simple routine to determine whether a mpidr is valid or not.
 ******************************************************************************/
int psci_validate_mpidr(u_register_t mpidr)
{
	if (plat_core_pos_by_mpidr(mpidr) < 0)
		return PSCI_E_INVALID_PARAMS;

	return PSCI_E_SUCCESS;
}

/*******************************************************************************
 * This function determines the full entrypoint information for the requested
 * PSCI entrypoint on power on/resume and returns it.
 ******************************************************************************/
#ifdef __aarch64__
static int psci_get_ns_ep_info(entry_point_info_t *ep,
			       uintptr_t entrypoint,
			       u_register_t context_id)
{
	u_register_t ep_attr, sctlr;
	unsigned int daif, ee, mode;
	u_register_t ns_scr_el3 = read_scr_el3();
	u_register_t ns_sctlr_el1 = read_sctlr_el1();

	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
		read_sctlr_el2() : ns_sctlr_el1;
	ee = 0;

	ep_attr = NON_SECURE | EP_ST_DISABLE;
	if ((sctlr & SCTLR_EE_BIT) != 0U) {
		ep_attr |= EP_EE_BIG;
		ee = 1;
	}
	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);

	ep->pc = entrypoint;
	zeromem(&ep->args, sizeof(ep->args));
	ep->args.arg0 = context_id;

	/*
	 * Figure out whether the cpu enters the non-secure address space
	 * in aarch32 or aarch64
	 */
	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {

		/*
		 * Check whether a Thumb entry point has been provided for an
		 * aarch64 EL
		 */
		if ((entrypoint & 0x1UL) != 0UL)
			return PSCI_E_INVALID_ADDRESS;

		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;

		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	} else {

		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
			MODE32_hyp : MODE32_svc;

		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;

		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
	}

	return PSCI_E_SUCCESS;
}
#else /* !__aarch64__ */
static int psci_get_ns_ep_info(entry_point_info_t *ep,
			       uintptr_t entrypoint,
			       u_register_t context_id)
{
	u_register_t ep_attr;
	unsigned int aif, ee, mode;
	u_register_t scr = read_scr();
	u_register_t ns_sctlr, sctlr;

	/* Switch to non secure state */
	write_scr(scr | SCR_NS_BIT);
	isb();
	ns_sctlr = read_sctlr();

	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;

	/* Return to original state */
	write_scr(scr);
	isb();
	ee = 0;

	ep_attr = NON_SECURE | EP_ST_DISABLE;
	if (sctlr & SCTLR_EE_BIT) {
		ep_attr |= EP_EE_BIG;
		ee = 1;
	}
	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);

	ep->pc = entrypoint;
	zeromem(&ep->args, sizeof(ep->args));
	ep->args.arg0 = context_id;

	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;

	/*
	 * TODO: Choose async. exception bits if HYP mode is not
	 * implemented according to the values of SCR.{AW, FW} bits
	 */
	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;

	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);

	return PSCI_E_SUCCESS;
}

#endif /* __aarch64__ */

/*******************************************************************************
 * This function validates the entrypoint with the platform layer if the
 * appropriate pm_ops hook is exported by the platform and returns the
 * 'entry_point_info'.
 ******************************************************************************/
int psci_validate_entry_point(entry_point_info_t *ep,
			      uintptr_t entrypoint,
			      u_register_t context_id)
{
	int rc;

	/* Validate the entrypoint using platform psci_ops */
	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
		if (rc != PSCI_E_SUCCESS)
			return PSCI_E_INVALID_ADDRESS;
	}

	/*
	 * Verify and derive the re-entry information for
	 * the non-secure world from the non-secure state from
	 * where this call originated.
	 */
	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
	return rc;
}

/*******************************************************************************
 * Generic handler which is called when a cpu is physically powered on. It
 * traverses the node information and finds the highest power level powered
 * off and performs generic, architectural, platform setup and state management
 * to power on that power level and power levels below it.
 * e.g. For a cpu that's been powered on, it will call the platform specific
 * code to enable the gic cpu interface and for a cluster it will enable
 * coherency at the interconnect level in addition to gic cpu interface.
 ******************************************************************************/
void psci_warmboot_entrypoint(void)
{
	unsigned int end_pwrlvl;
	int cpu_idx = (int) plat_my_core_pos();
	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };

	/*
	 * Verify that we have been explicitly turned ON or resumed from
	 * suspend.
	 */
	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
		ERROR("Unexpected affinity info state");
		panic();
	}

	/*
	 * Get the maximum power domain level to traverse to after this cpu
	 * has been physically powered up.
	 */
	end_pwrlvl = get_power_on_target_pwrlvl();

	/* Get the parent nodes */
	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);

	/*
	 * This function acquires the lock corresponding to each power level so
	 * that by the time all locks are taken, the system topology is snapshot
	 * and state management can be done safely.
	 */
	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);

	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);

#if ENABLE_PSCI_STAT
	plat_psci_stat_accounting_stop(&state_info);
#endif

	/*
	 * This CPU could be resuming from suspend or it could have just been
	 * turned on. To distinguish between these 2 cases, we examine the
	 * affinity state of the CPU:
	 *  - If the affinity state is ON_PENDING then it has just been
	 *    turned on.
	 *  - Else it is resuming from suspend.
	 *
	 * Depending on the type of warm reset identified, choose the right set
	 * of power management handler and perform the generic, architecture
	 * and platform specific handling.
	 */
	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
		psci_cpu_on_finish(cpu_idx, &state_info);
	else
		psci_cpu_suspend_finish(cpu_idx, &state_info);

	/*
	 * Set the requested and target state of this CPU and all the higher
	 * power domains which are ancestors of this CPU to run.
	 */
	psci_set_pwr_domains_to_run(end_pwrlvl);

#if ENABLE_PSCI_STAT
	/*
	 * Update PSCI stats.
	 * Caches are off when writing stats data on the power down path.
	 * Since caches are now enabled, it's necessary to do cache
	 * maintenance before reading that same data.
	 */
	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
#endif

	/*
	 * This loop releases the lock corresponding to each power level
	 * in the reverse order to which they were acquired.
	 */
	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
}

/*******************************************************************************
 * This function initializes the set of hooks that PSCI invokes as part of power
 * management operation. The power management hooks are expected to be provided
 * by the SPD, after it finishes all its initialization
 ******************************************************************************/
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
{
	assert(pm != NULL);
	psci_spd_pm = pm;

	if (pm->svc_migrate != NULL)
		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);

	if (pm->svc_migrate_info != NULL)
		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
				| define_psci_cap(PSCI_MIG_INFO_TYPE);
}

/*******************************************************************************
 * This function invokes the migrate info hook in the spd_pm_ops. It performs
 * the necessary return value validation. If the Secure Payload is UP and
 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
 * is resident through the mpidr parameter. Else the value of the parameter on
 * return is undefined.
 ******************************************************************************/
int psci_spd_migrate_info(u_register_t *mpidr)
{
	int rc;

	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
		return PSCI_E_NOT_SUPPORTED;

	rc = psci_spd_pm->svc_migrate_info(mpidr);

	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));

	return rc;
}


/*******************************************************************************
 * This function prints the state of all power domains present in the
 * system
 ******************************************************************************/
void psci_print_power_domain_map(void)
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
	int idx;
	plat_local_state_t state;
	plat_local_state_type_t state_type;

	/* This array maps to the PSCI_STATE_X definitions in psci.h */
	static const char * const psci_state_type_str[] = {
		"ON",
		"RETENTION",
		"OFF",
	};

	INFO("PSCI Power Domain Map:\n");
	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
							idx++) {
		state_type = find_local_state_type(
				psci_non_cpu_pd_nodes[idx].local_state);
		INFO("  Domain Node : Level %u, parent_node %d,"
				" State %s (0x%x)\n",
				psci_non_cpu_pd_nodes[idx].level,
				psci_non_cpu_pd_nodes[idx].parent_node,
				psci_state_type_str[state_type],
				psci_non_cpu_pd_nodes[idx].local_state);
	}

	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
		state = psci_get_cpu_local_state_by_idx(idx);
		state_type = find_local_state_type(state);
		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
				" State %s (0x%x)\n",
				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
				psci_cpu_pd_nodes[idx].parent_node,
				psci_state_type_str[state_type],
				psci_get_cpu_local_state_by_idx(idx));
	}
#endif
}

/******************************************************************************
 * Return whether any secondaries were powered up with CPU_ON call. A CPU that
 * have ever been powered up would have set its MPDIR value to something other
 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
 * meaningful only when called on the primary CPU during early boot.
 *****************************************************************************/
int psci_secondaries_brought_up(void)
{
	unsigned int idx, n_valid = 0U;

	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
			n_valid++;
	}

	assert(n_valid > 0U);

	return (n_valid > 1U) ? 1 : 0;
}

/*******************************************************************************
 * Initiate power down sequence, by calling power down operations registered for
 * this CPU.
 ******************************************************************************/
void psci_do_pwrdown_sequence(unsigned int power_level)
{
#if HW_ASSISTED_COHERENCY
	/*
	 * With hardware-assisted coherency, the CPU drivers only initiate the
	 * power down sequence, without performing cache-maintenance operations
	 * in software. Data caches enabled both before and after this call.
	 */
	prepare_cpu_pwr_dwn(power_level);
#else
	/*
	 * Without hardware-assisted coherency, the CPU drivers disable data
	 * caches, then perform cache-maintenance operations in software.
	 *
	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
	 * sequence, but that function will return with data caches disabled.
	 * We must ensure that the stack memory is flushed out to memory before
	 * we start popping from it again.
	 */
	psci_do_pwrdown_cache_maintenance(power_level);
#endif
}