• Jon Medhurst's avatar
    Fix implementation and users of gicd_set_ipriorityr() · cf6eeb8a
    Jon Medhurst authored
    
    Make gicd_set_ipriorityr() actually write to the priority register.
    
    Also correct callers of this function which want the highest priority
    to use the value zero as this is the highest priority value according
    to the ARM Generic Interrupt Controller Architecture Specification.
    
    To make this easier to get right, we introduce defines for the lowest
    and highest priorities for secure and non-secure interrupts.
    
    Fixes ARM-software/tf-issues#21
    Signed-off-by: default avatarJon Medhurst <tixy@linaro.org>
    cf6eeb8a
gic_v2.c 9.44 KB
/*
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <assert.h>
#include <gic.h>
#include <mmio.h>

/*******************************************************************************
 * GIC Distributor interface accessors for reading entire registers
 ******************************************************************************/

unsigned int gicd_read_igroupr(unsigned int base, unsigned int id)
{
	unsigned n = id >> IGROUPR_SHIFT;
	return mmio_read_32(base + GICD_IGROUPR + (n << 2));
}

unsigned int gicd_read_isenabler(unsigned int base, unsigned int id)
{
	unsigned n = id >> ISENABLER_SHIFT;
	return mmio_read_32(base + GICD_ISENABLER + (n << 2));
}

unsigned int gicd_read_icenabler(unsigned int base, unsigned int id)
{
	unsigned n = id >> ICENABLER_SHIFT;
	return mmio_read_32(base + GICD_ICENABLER + (n << 2));
}

unsigned int gicd_read_ispendr(unsigned int base, unsigned int id)
{
	unsigned n = id >> ISPENDR_SHIFT;
	return mmio_read_32(base + GICD_ISPENDR + (n << 2));
}

unsigned int gicd_read_icpendr(unsigned int base, unsigned int id)
{
	unsigned n = id >> ICPENDR_SHIFT;
	return mmio_read_32(base + GICD_ICPENDR + (n << 2));
}

unsigned int gicd_read_isactiver(unsigned int base, unsigned int id)
{
	unsigned n = id >> ISACTIVER_SHIFT;
	return mmio_read_32(base + GICD_ISACTIVER + (n << 2));
}

unsigned int gicd_read_icactiver(unsigned int base, unsigned int id)
{
	unsigned n = id >> ICACTIVER_SHIFT;
	return mmio_read_32(base + GICD_ICACTIVER + (n << 2));
}

unsigned int gicd_read_ipriorityr(unsigned int base, unsigned int id)
{
	unsigned n = id >> IPRIORITYR_SHIFT;
	return mmio_read_32(base + GICD_IPRIORITYR + (n << 2));
}

unsigned int gicd_read_itargetsr(unsigned int base, unsigned int id)
{
	unsigned n = id >> ITARGETSR_SHIFT;
	return mmio_read_32(base + GICD_ITARGETSR + (n << 2));
}

unsigned int gicd_read_icfgr(unsigned int base, unsigned int id)
{
	unsigned n = id >> ICFGR_SHIFT;
	return mmio_read_32(base + GICD_ICFGR + (n << 2));
}

unsigned int gicd_read_cpendsgir(unsigned int base, unsigned int id)
{
	unsigned n = id >> CPENDSGIR_SHIFT;
	return mmio_read_32(base + GICD_CPENDSGIR + (n << 2));
}

unsigned int gicd_read_spendsgir(unsigned int base, unsigned int id)
{
	unsigned n = id >> SPENDSGIR_SHIFT;
	return mmio_read_32(base + GICD_SPENDSGIR + (n << 2));
}

/*******************************************************************************
 * GIC Distributor interface accessors for writing entire registers
 ******************************************************************************/

void gicd_write_igroupr(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> IGROUPR_SHIFT;
	mmio_write_32(base + GICD_IGROUPR + (n << 2), val);
}

void gicd_write_isenabler(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> ISENABLER_SHIFT;
	mmio_write_32(base + GICD_ISENABLER + (n << 2), val);
}

void gicd_write_icenabler(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> ICENABLER_SHIFT;
	mmio_write_32(base + GICD_ICENABLER + (n << 2), val);
}

void gicd_write_ispendr(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> ISPENDR_SHIFT;
	mmio_write_32(base + GICD_ISPENDR + (n << 2), val);
}

void gicd_write_icpendr(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> ICPENDR_SHIFT;
	mmio_write_32(base + GICD_ICPENDR + (n << 2), val);
}

void gicd_write_isactiver(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> ISACTIVER_SHIFT;
	mmio_write_32(base + GICD_ISACTIVER + (n << 2), val);
}

void gicd_write_icactiver(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> ICACTIVER_SHIFT;
	mmio_write_32(base + GICD_ICACTIVER + (n << 2), val);
}

void gicd_write_ipriorityr(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> IPRIORITYR_SHIFT;
	mmio_write_32(base + GICD_IPRIORITYR + (n << 2), val);
}

void gicd_write_itargetsr(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> ITARGETSR_SHIFT;
	mmio_write_32(base + GICD_ITARGETSR + (n << 2), val);
}

void gicd_write_icfgr(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> ICFGR_SHIFT;
	mmio_write_32(base + GICD_ICFGR + (n << 2), val);
}

void gicd_write_cpendsgir(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> CPENDSGIR_SHIFT;
	mmio_write_32(base + GICD_CPENDSGIR + (n << 2), val);
}

void gicd_write_spendsgir(unsigned int base, unsigned int id, unsigned int val)
{
	unsigned n = id >> SPENDSGIR_SHIFT;
	mmio_write_32(base + GICD_SPENDSGIR + (n << 2), val);
}

/*******************************************************************************
 * GIC Distributor interface accessors for individual interrupt manipulation
 ******************************************************************************/
unsigned int gicd_get_igroupr(unsigned int base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
	unsigned int reg_val = gicd_read_igroupr(base, id);

	return (reg_val >> bit_num) & 0x1;
}

void gicd_set_igroupr(unsigned int base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
	unsigned int reg_val = gicd_read_igroupr(base, id);

	gicd_write_igroupr(base, id, reg_val | (1 << bit_num));
}

void gicd_clr_igroupr(unsigned int base, unsigned int id)
{
	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
	unsigned int reg_val = gicd_read_igroupr(base, id);

	gicd_write_igroupr(base, id, reg_val & ~(1 << bit_num));
}

void gicd_set_isenabler(unsigned int base, unsigned int id)
{
	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
	unsigned int reg_val = gicd_read_isenabler(base, id);

	gicd_write_isenabler(base, id, reg_val | (1 << bit_num));
}

void gicd_set_icenabler(unsigned int base, unsigned int id)
{
	unsigned bit_num = id & ((1 << ICENABLER_SHIFT) - 1);
	unsigned int reg_val = gicd_read_icenabler(base, id);

	gicd_write_icenabler(base, id, reg_val & ~(1 << bit_num));
}

void gicd_set_ispendr(unsigned int base, unsigned int id)
{
	unsigned bit_num = id & ((1 << ISPENDR_SHIFT) - 1);
	unsigned int reg_val = gicd_read_ispendr(base, id);

	gicd_write_ispendr(base, id, reg_val | (1 << bit_num));
}

void gicd_set_icpendr(unsigned int base, unsigned int id)
{
	unsigned bit_num = id & ((1 << ICPENDR_SHIFT) - 1);
	unsigned int reg_val = gicd_read_icpendr(base, id);

	gicd_write_icpendr(base, id, reg_val & ~(1 << bit_num));
}

void gicd_set_isactiver(unsigned int base, unsigned int id)
{
	unsigned bit_num = id & ((1 << ISACTIVER_SHIFT) - 1);
	unsigned int reg_val = gicd_read_isactiver(base, id);

	gicd_write_isactiver(base, id, reg_val | (1 << bit_num));
}

void gicd_set_icactiver(unsigned int base, unsigned int id)
{
	unsigned bit_num = id & ((1 << ICACTIVER_SHIFT) - 1);
	unsigned int reg_val = gicd_read_icactiver(base, id);

	gicd_write_icactiver(base, id, reg_val & ~(1 << bit_num));
}

/*
 * Make sure that the interrupt's group is set before expecting
 * this function to do its job correctly.
 */
void gicd_set_ipriorityr(unsigned int base, unsigned int id, unsigned int pri)
{
	unsigned int reg = base + GICD_IPRIORITYR + (id & ~3);
	unsigned int shift = (id & 3) << 3;
	unsigned int reg_val = mmio_read_32(reg);

	/*
	 * Enforce ARM recommendation to manage priority values such
	 * that group1 interrupts always have a lower priority than
	 * group0 interrupts.
	 * Note, lower numerical values are higher priorities so the comparison
	 * checks below are reversed from what might be expected.
	 */
	assert(gicd_get_igroupr(base, id) == GRP1 ?
		pri >= GIC_HIGHEST_NS_PRIORITY &&
			pri <= GIC_LOWEST_NS_PRIORITY :
		pri >= GIC_HIGHEST_SEC_PRIORITY &&
			pri <= GIC_LOWEST_SEC_PRIORITY);

	reg_val &= ~(GIC_PRI_MASK << shift);
	reg_val |= (pri & GIC_PRI_MASK) << shift;
	mmio_write_32(reg, reg_val);
}

void gicd_set_itargetsr(unsigned int base, unsigned int id, unsigned int iface)
{
	unsigned byte_off = id & ((1 << ITARGETSR_SHIFT) - 1);
	unsigned int reg_val = gicd_read_itargetsr(base, id);

	gicd_write_itargetsr(base, id, reg_val |
			     (1 << iface) << (byte_off << 3));
}