• Vikram Kanigiri's avatar
    Extend SPSR definitions for full use of ELx modes · cfd102d6
    Vikram Kanigiri authored
    Extended SPSR definitions with all the fields to allow full use
    of EL2/EL1 execution modes for entry points
    Replaced make_spsr() with SPSR_64 macro and added SPSR_32 macro
    for generating AARCH32 mode SPSR
    
    Change-Id: I9425dda0923e8d5f03d03ddb8fa0e28392c4c61e
    cfd102d6
psci_common.c 19.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include "psci_private.h"

/*
 * SPD power management operations, expected to be supplied by the registered
 * SPD on successful SP initialization
 */
const spd_pm_ops_t *psci_spd_pm;

/*******************************************************************************
 * Arrays that contains information needs to resume a cpu's execution when woken
 * out of suspend or off states. 'psci_ns_einfo_idx' keeps track of the next
 * free index in the 'psci_ns_entry_info' & 'psci_suspend_context' arrays. Each
 * cpu is allocated a single entry in each array during startup.
 ******************************************************************************/
suspend_context_t psci_suspend_context[PSCI_NUM_AFFS];
ns_entry_info_t psci_ns_entry_info[PSCI_NUM_AFFS];
unsigned int psci_ns_einfo_idx;

/*******************************************************************************
 * Grand array that holds the platform's topology information for state
 * management of affinity instances. Each node (aff_map_node) in the array
 * corresponds to an affinity instance e.g. cluster, cpu within an mpidr
 ******************************************************************************/
aff_map_node_t psci_aff_map[PSCI_NUM_AFFS]
__attribute__ ((section("tzfw_coherent_mem")));

/*******************************************************************************
 * In a system, a certain number of affinity instances are present at an
 * affinity level. The cumulative number of instances across all levels are
 * stored in 'psci_aff_map'. The topology tree has been flattenned into this
 * array. To retrieve nodes, information about the extents of each affinity
 * level i.e. start index and end index needs to be present. 'psci_aff_limits'
 * stores this information.
 ******************************************************************************/
aff_limits_node_t psci_aff_limits[MPIDR_MAX_AFFLVL + 1];

/*******************************************************************************
 * Pointer to functions exported by the platform to complete power mgmt. ops
 ******************************************************************************/
const plat_pm_ops_t *psci_plat_pm_ops;

/*******************************************************************************
 * Routine to return the maximum affinity level to traverse to after a cpu has
 * been physically powered up. It is expected to be called immediately after
 * reset from assembler code. It has to find its 'aff_map_node' instead of
 * getting it as an argument.
 * TODO: Calling psci_get_aff_map_node() with the MMU disabled is slow. Add
 * support to allow faster access to the target affinity level.
 ******************************************************************************/
int get_power_on_target_afflvl(unsigned long mpidr)
{
	aff_map_node_t *node;
	unsigned int state;
	int afflvl;

	/* Retrieve our node from the topology tree */
	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
	assert(node);

	/*
	 * Return the maximum supported affinity level if this cpu was off.
	 * Call the handler in the suspend code if this cpu had been suspended.
	 * Any other state is invalid.
	 */
	state = psci_get_state(node);
	if (state == PSCI_STATE_ON_PENDING)
		return get_max_afflvl();

	if (state == PSCI_STATE_SUSPEND) {
		afflvl = psci_get_aff_map_node_suspend_afflvl(node);
		assert(afflvl != PSCI_INVALID_DATA);
		return afflvl;
	}
	return PSCI_E_INVALID_PARAMS;
}

/*******************************************************************************
 * Simple routine to retrieve the maximum affinity level supported by the
 * platform and check that it makes sense.
 ******************************************************************************/
int get_max_afflvl()
{
	int aff_lvl;

	aff_lvl = plat_get_max_afflvl();
	assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0);

	return aff_lvl;
}

/*******************************************************************************
 * Simple routine to set the id of an affinity instance at a given level in the
 * mpidr.
 ******************************************************************************/
unsigned long mpidr_set_aff_inst(unsigned long mpidr,
				 unsigned char aff_inst,
				 int aff_lvl)
{
	unsigned long aff_shift;

	assert(aff_lvl <= MPIDR_AFFLVL3);

	/*
	 * Decide the number of bits to shift by depending upon
	 * the affinity level
	 */
	aff_shift = get_afflvl_shift(aff_lvl);

	/* Clear the existing affinity instance & set the new one*/
	mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift);
	mpidr |= aff_inst << aff_shift;

	return mpidr;
}

/*******************************************************************************
 * This function sanity checks a range of affinity levels.
 ******************************************************************************/
int psci_check_afflvl_range(int start_afflvl, int end_afflvl)
{
	/* Sanity check the parameters passed */
	if (end_afflvl > MPIDR_MAX_AFFLVL)
		return PSCI_E_INVALID_PARAMS;

	if (start_afflvl < MPIDR_AFFLVL0)
		return PSCI_E_INVALID_PARAMS;

	if (end_afflvl < start_afflvl)
		return PSCI_E_INVALID_PARAMS;

	return PSCI_E_SUCCESS;
}

/*******************************************************************************
 * This function is passed an array of pointers to affinity level nodes in the
 * topology tree for an mpidr. It picks up locks for each affinity level bottom
 * up in the range specified.
 ******************************************************************************/
void psci_acquire_afflvl_locks(unsigned long mpidr,
			       int start_afflvl,
			       int end_afflvl,
			       mpidr_aff_map_nodes_t mpidr_nodes)
{
	int level;

	for (level = start_afflvl; level <= end_afflvl; level++) {
		if (mpidr_nodes[level] == NULL)
			continue;
		bakery_lock_get(mpidr, &mpidr_nodes[level]->lock);
	}
}

/*******************************************************************************
 * This function is passed an array of pointers to affinity level nodes in the
 * topology tree for an mpidr. It releases the lock for each affinity level top
 * down in the range specified.
 ******************************************************************************/
void psci_release_afflvl_locks(unsigned long mpidr,
			       int start_afflvl,
			       int end_afflvl,
			       mpidr_aff_map_nodes_t mpidr_nodes)
{
	int level;

	for (level = end_afflvl; level >= start_afflvl; level--) {
		if (mpidr_nodes[level] == NULL)
			continue;
		bakery_lock_release(mpidr, &mpidr_nodes[level]->lock);
	}
}

/*******************************************************************************
 * Simple routine to determine whether an affinity instance at a given level
 * in an mpidr exists or not.
 ******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr, int level)
{
	aff_map_node_t *node;

	node = psci_get_aff_map_node(mpidr, level);
	if (node && (node->state & PSCI_AFF_PRESENT))
		return PSCI_E_SUCCESS;
	else
		return PSCI_E_INVALID_PARAMS;
}

/*******************************************************************************
 * This function retrieves all the stashed information needed to correctly
 * resume a cpu's execution in the non-secure state after it has been physically
 * powered on i.e. turned ON or resumed from SUSPEND
 ******************************************************************************/
void psci_get_ns_entry_info(unsigned int index)
{
	unsigned long sctlr = 0, scr, el_status, id_aa64pfr0;
	uint64_t mpidr = read_mpidr();
	cpu_context_t *ns_entry_context;
	gp_regs_t *ns_entry_gpregs;

	scr = read_scr();

	/* Find out which EL we are going to */
	id_aa64pfr0 = read_id_aa64pfr0_el1();
	el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
		ID_AA64PFR0_ELX_MASK;

	/* Restore endianess */
	if (psci_ns_entry_info[index].sctlr & SCTLR_EE_BIT)
		sctlr |= SCTLR_EE_BIT;
	else
		sctlr &= ~SCTLR_EE_BIT;

	/* Turn off MMU and Caching */
	sctlr &= ~(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_M_BIT);

	/* Set the register width */
	if (psci_ns_entry_info[index].scr & SCR_RW_BIT)
		scr |= SCR_RW_BIT;
	else
		scr &= ~SCR_RW_BIT;

	scr |= SCR_NS_BIT;

	if (el_status)
		write_sctlr_el2(sctlr);
	else
		write_sctlr_el1(sctlr);

	/* Fulfill the cpu_on entry reqs. as per the psci spec */
	ns_entry_context = (cpu_context_t *) cm_get_context(mpidr, NON_SECURE);
	assert(ns_entry_context);

	/*
	 * Setup general purpose registers to return the context id and
	 * prevent leakage of secure information into the normal world.
	 */
	ns_entry_gpregs = get_gpregs_ctx(ns_entry_context);
	write_ctx_reg(ns_entry_gpregs,
		      CTX_GPREG_X0,
		      psci_ns_entry_info[index].context_id);

	/*
	 * Tell the context management library to setup EL3 system registers to
	 * be able to ERET into the ns state, and SP_EL3 points to the right
	 * context to exit from EL3 correctly.
	 */
	cm_set_el3_eret_context(NON_SECURE,
			psci_ns_entry_info[index].eret_info.entrypoint,
			psci_ns_entry_info[index].eret_info.spsr,
			scr);

	cm_set_next_eret_context(NON_SECURE);
}

/*******************************************************************************
 * This function retrieves and stashes all the information needed to correctly
 * resume a cpu's execution in the non-secure state after it has been physically
 * powered on i.e. turned ON or resumed from SUSPEND. This is done prior to
 * turning it on or before suspending it.
 ******************************************************************************/
int psci_set_ns_entry_info(unsigned int index,
			   unsigned long entrypoint,
			   unsigned long context_id)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int rw, mode, ee, spsr = 0;
	unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1(), scr = read_scr();
	unsigned long el_status;
	unsigned long daif;

	/* Figure out what mode do we enter the non-secure world in */
	el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
		ID_AA64PFR0_ELX_MASK;

	/*
	 * Figure out whether the cpu enters the non-secure address space
	 * in aarch32 or aarch64
	 */
	rw = scr & SCR_RW_BIT;
	if (rw) {

		/*
		 * Check whether a Thumb entry point has been provided for an
		 * aarch64 EL
		 */
		if (entrypoint & 0x1)
			return PSCI_E_INVALID_PARAMS;

		if (el_status && (scr & SCR_HCE_BIT)) {
			mode = MODE_EL2;
			ee = read_sctlr_el2() & SCTLR_EE_BIT;
		} else {
			mode = MODE_EL1;
			ee = read_sctlr_el1() & SCTLR_EE_BIT;
		}

		spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);

		psci_ns_entry_info[index].sctlr |= ee;
		psci_ns_entry_info[index].scr |= SCR_RW_BIT;
	} else {


		if (el_status && (scr & SCR_HCE_BIT)) {
			mode = MODE32_hyp;
			ee = read_sctlr_el2() & SCTLR_EE_BIT;
		} else {
			mode = MODE32_svc;
			ee = read_sctlr_el1() & SCTLR_EE_BIT;
		}

		/*
		 * TODO: Choose async. exception bits if HYP mode is not
		 * implemented according to the values of SCR.{AW, FW} bits
		 */
		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;

		spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);

		/* Ensure that the CSPR.E and SCTLR.EE bits match */
		psci_ns_entry_info[index].sctlr |= ee;
		psci_ns_entry_info[index].scr &= ~SCR_RW_BIT;
	}

	psci_ns_entry_info[index].eret_info.entrypoint = entrypoint;
	psci_ns_entry_info[index].eret_info.spsr = spsr;
	psci_ns_entry_info[index].context_id = context_id;

	return rc;
}

/*******************************************************************************
 * This function takes a pointer to an affinity node in the topology tree and
 * returns its state. State of a non-leaf node needs to be calculated.
 ******************************************************************************/
unsigned short psci_get_state(aff_map_node_t *node)
{
	assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);

	/* A cpu node just contains the state which can be directly returned */
	if (node->level == MPIDR_AFFLVL0)
		return (node->state >> PSCI_STATE_SHIFT) & PSCI_STATE_MASK;

	/*
	 * For an affinity level higher than a cpu, the state has to be
	 * calculated. It depends upon the value of the reference count
	 * which is managed by each node at the next lower affinity level
	 * e.g. for a cluster, each cpu increments/decrements the reference
	 * count. If the reference count is 0 then the affinity level is
	 * OFF else ON.
	 */
	if (node->ref_count)
		return PSCI_STATE_ON;
	else
		return PSCI_STATE_OFF;
}

/*******************************************************************************
 * This function takes a pointer to an affinity node in the topology tree and
 * a target state. State of a non-leaf node needs to be converted to a reference
 * count. State of a leaf node can be set directly.
 ******************************************************************************/
void psci_set_state(aff_map_node_t *node, unsigned short state)
{
	assert(node->level >= MPIDR_AFFLVL0 && node->level <= MPIDR_MAX_AFFLVL);

	/*
	 * For an affinity level higher than a cpu, the state is used
	 * to decide whether the reference count is incremented or
	 * decremented. Entry into the ON_PENDING state does not have
	 * effect.
	 */
	if (node->level > MPIDR_AFFLVL0) {
		switch (state) {
		case PSCI_STATE_ON:
			node->ref_count++;
			break;
		case PSCI_STATE_OFF:
		case PSCI_STATE_SUSPEND:
			node->ref_count--;
			break;
		case PSCI_STATE_ON_PENDING:
			/*
			 * An affinity level higher than a cpu will not undergo
			 * a state change when it is about to be turned on
			 */
			return;
		default:
			assert(0);
		}
	} else {
		node->state &= ~(PSCI_STATE_MASK << PSCI_STATE_SHIFT);
		node->state |= (state & PSCI_STATE_MASK) << PSCI_STATE_SHIFT;
	}
}

/*******************************************************************************
 * An affinity level could be on, on_pending, suspended or off. These are the
 * logical states it can be in. Physically either it is off or on. When it is in
 * the state on_pending then it is about to be turned on. It is not possible to
 * tell whether that's actually happenned or not. So we err on the side of
 * caution & treat the affinity level as being turned off.
 ******************************************************************************/
unsigned short psci_get_phys_state(aff_map_node_t *node)
{
	unsigned int state;

	state = psci_get_state(node);
	return get_phys_state(state);
}

/*******************************************************************************
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the physical power on handler for the corresponding
 * affinity levels
 ******************************************************************************/
static int psci_call_power_on_handlers(mpidr_aff_map_nodes_t mpidr_nodes,
				       int start_afflvl,
				       int end_afflvl,
				       afflvl_power_on_finisher_t *pon_handlers,
				       unsigned long mpidr)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
	aff_map_node_t *node;

	for (level = end_afflvl; level >= start_afflvl; level--) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * If we run into any trouble while powering up an
		 * affinity instance, then there is no recovery path
		 * so simply return an error and let the caller take
		 * care of the situation.
		 */
		rc = pon_handlers[level](mpidr, node);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Generic handler which is called when a cpu is physically powered on. It
 * traverses through all the affinity levels performing generic, architectural,
 * platform setup and state management e.g. for a cluster that's been powered
 * on, it will call the platform specific code which will enable coherency at
 * the interconnect level. For a cpu it could mean turning on the MMU etc.
 *
 * The state of all the relevant affinity levels is changed after calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is exiting from.
 *
 * The affinity level specific handlers are called in descending order i.e. from
 * the highest to the lowest affinity level implemented by the platform because
 * to turn on affinity level X it is neccesary to turn on affinity level X + 1
 * first.
 *
 * CAUTION: This function is called with coherent stacks so that coherency and
 * the mmu can be turned on safely.
 ******************************************************************************/
void psci_afflvl_power_on_finish(unsigned long mpidr,
				 int start_afflvl,
				 int end_afflvl,
				 afflvl_power_on_finisher_t *pon_handlers)
{
	mpidr_aff_map_nodes_t mpidr_nodes;
	int rc;

	mpidr &= MPIDR_AFFINITY_MASK;

	/*
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect. Either case is an irrecoverable error.
	 */
	rc = psci_get_aff_map_nodes(mpidr,
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		panic();

	/*
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
	 */
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);

	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_power_on_handlers(mpidr_nodes,
					 start_afflvl,
					 end_afflvl,
					 pon_handlers,
					 mpidr);
	if (rc != PSCI_E_SUCCESS)
		panic();

	/*
	 * This loop releases the lock corresponding to each affinity level
	 * in the reverse order to which they were acquired.
	 */
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
}

/*******************************************************************************
 * This function initializes the set of hooks that PSCI invokes as part of power
 * management operation. The power management hooks are expected to be provided
 * by the SPD, after it finishes all its initialization
 ******************************************************************************/
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
{
	psci_spd_pm = pm;
}