Commit 4ec3ccb4 authored by Madhukar Pappireddy's avatar Madhukar Pappireddy
Browse files

Add documentation for SMMUv3 driver in Hafnium(SPM)



Change-Id: I0b38c114fd2958d2b4040585611cafa132ccfd9c
Signed-off-by: default avatarMadhukar Pappireddy <madhukar.pappireddy@arm.com>
parent 38b7c9c6
......@@ -6,6 +6,8 @@ Secure Partition Manager
Acronyms
========
+--------+-----------------------------------+
| DMA | Direct Memory Access |
+--------+-----------------------------------+
| DTB | Device Tree Blob |
+--------+-----------------------------------+
......@@ -33,6 +35,8 @@ Acronyms
+--------+-----------------------------------+
| PSA | Platform Security Architecture |
+--------+-----------------------------------+
| SMMU | System Memory Management Unit |
+--------+-----------------------------------+
| SP | Secure Partition |
+--------+-----------------------------------+
| SPM | Secure Partition Manager |
......@@ -832,6 +836,114 @@ The register operation can either be an implementation-defined service call
to the SPMC when the primary SP EC boots, or be supplied through the SP
manifest.
Support for SMMUv3 in Hafnium
=============================
An SMMU is analogous to an MMU in a CPU. It performs address translations for
Direct Memory Access (DMA) requests from system I/O devices.
The responsibilities of an SMMU include:
- Translation: Incoming DMA requests are translated from bus address space to
system physical address space using translation tables compliant to
Armv8/Armv7 VMSA descriptor format.
- Protection: An I/O device can be prohibited from read, write access to a
memory region or allowed.
- Isolation: Traffic from each individial device can be independently managed.
The devices are differentiated from each other using unique translation
tables.
The following diagram illustrates a typical SMMU IP integrated in a SoC with
several I/O devices along with Interconnect and Memory system.
.. image:: ../resources/diagrams/MMU-600.png
SMMU has several versions including SMMUv1, SMMUv2 and SMMUv3. Hafnium provides
support for SMMUv3 driver in both Normal and Secure World. A brief introduction
of SMMUv3 functionality and the corresponding software support in Hafnium is
provided here.
SMMUv3 features
---------------
- SMMUv3 provides Stage1, Stage2 translation as well as nested (Stage1 + Stage2)
translation support. It can either bypass or abort incoming translations as
well.
- Traffic (memory transactions) from each upstream I/O peripheral device,
referred to as Stream, can be independently managed using a combination of
several memory based configuration structures. This allows the SMMUv3 to
support a large number of streams with each stream assigned to a unique
translation context.
- Support for Armv8.1 VMSA where the SMMU shares the translation tables with
a Processing Element. AArch32(LPAE) and AArch64 translation table format
are supported by SMMUv3.
- SMMUv3 offers non-secure stream support with secure stream support being
optional. Logically, SMMUv3 behaves as if there is an indepdendent SMMU
instance for secure and non-secure stream support.
- It also supports sub-streams to differentiate traffic from a virtualized
peripheral associated with a VM/SP.
- Additionally, SMMUv3.2 provides support for PEs implementing Armv8.4-A
extensions. Consequently, SPM depends on Secure EL2 support in SMMUv3.2
for providing Secure Stage2 translation support to upstream peripheral
devices.
SMMUv3 Programming Interfaces
-----------------------------
SMMUv3 has three software interfaces that are used by the Hafnium driver to
configure the behaviour of SMMUv3 and manage the streams.
- Memory based data strutures that provide unique translation context for
each stream.
- Memory based circular buffers for command queue and event queue.
- A large number of SMMU configuration registers that are memory mapped during
boot time by Hafnium driver. Except a few registers, all configuration
registers have independent secure and non-secure versions to configure the
behaviour of SMMUv3 for translation of secure and non-secure streams
respectively.
Peripheral device manifest
--------------------------
Currently, SMMUv3 driver in Hafnium only supports dependent peripheral devices.
These devices are dependent on PE endpoint to initiate and receive memory
management transactions on their behalf. The acccess to the MMIO regions of
any such device is assigned to the endpoint during boot. Moreover, SMMUv3 driver
uses the same stage 2 translations for the device as those used by partition
manager on behalf of the PE endpoint. This ensures that the peripheral device
has the same visibility of the physical address space as the endpoint. The
device node of the corresponding partition manifest (refer to `[1]`_ section 3.2
) must specify these additional properties for each peripheral device in the
system :
- smmu-id: This field helps to identify the SMMU instance that this device is
upstream of.
- stream-ids: List of stream IDs assigned to this device.
.. code:: shell
smmuv3-testengine {
base-address = <0x00000000 0x2bfe0000>;
pages-count = <32>;
attributes = <0x3>;
smmu-id = <0>;
stream-ids = <0x0 0x1>;
interrupts = <0x2 0x3>, <0x4 0x5>;
exclusive-access;
};
SMMUv3 driver limitations
-------------------------
The primary design goal for the Hafnium SMMU driver is to support secure
streams.
- Currently, the driver only supports Stage2 translations. No support for
Stage1 or nested translations.
- Supports only AArch64 translation format.
- No support for features such as PCI Express (PASIDs, ATS, PRI), MSI, RAS,
Fault handling, Performance Monitor Extensions, Event Handling, MPAM.
- No support for independent peripheral devices.
References
==========
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment