Commit 562aef8e authored by davidcunado-arm's avatar davidcunado-arm Committed by GitHub
Browse files

Merge pull request #950 from danh-arm/hz/hikey

HiKey v3
parents c8640565 3d3b02d9
Description
====================
HiKey is one of 96boards. Hisilicon Kirin6220 processor is installed on HiKey.
More information are listed in [link](https://github.com/96boards/documentation/blob/master/ConsumerEdition/HiKey/Quickstart/README.md).
How to build
====================
1. Code Locations
-----------------
* ARM Trusted Firmware:
[link](https://github.com/ARM-software/arm-trusted-firmware)
* edk2:
[link](https://github.com/96boards-hikey/edk2/tree/testing/hikey960_v2.5)
* OpenPlatformPkg:
[link](https://github.com/96boards-hikey/OpenPlatformPkg/tree/testing/hikey960_v1.3.4)
* l-loader:
[link](https://github.com/96boards-hikey/l-loader/tree/testing/hikey960_v1.2)
* uefi-tools:
[link](https://github.com/96boards-hikey/uefi-tools/tree/testing/hikey960_v1)
* atf-fastboot:
[link](https://github.com/96boards-hikey/atf-fastboot/tree/master)
2. Build Procedure
------------------
* Fetch all the above repositories into local host.
Make all the repositories in the same ${BUILD_PATH}.
* Create the symbol link to OpenPlatformPkg in edk2.
<br>`$cd ${BUILD_PATH}/edk2`</br>
<br>`$ln -sf ../OpenPlatformPkg`</br>
* Prepare AARCH64 && AARCH32 toolchain. Prepare python.
* If your hikey hardware is built by CircuitCo, update _uefi-tools/platform.config_ first. _(optional)_
<br>__Uncomment the below sentence. Otherwise, UEFI can't output messages on serial
console on hikey.__</br>
<br>`BUILDFLAGS=-DSERIAL_BASE=0xF8015000`</br>
<br>If your hikey hardware is built by LeMarker, nothing to do.</br>
* Build it as debug mode. Create your own build script file or you could refer to __build_uefi.sh__ in l-loader git repository.
<br>`BUILD_OPTION=DEBUG`</br>
<br>`export AARCH64_TOOLCHAIN=GCC5`</br>
<br>`export UEFI_TOOLS_DIR=${BUILD_PATH}/uefi-tools`<br>
<br>`export EDK2_DIR=${BUILD_PATH}/edk2`</br>
<br>`EDK2_OUTPUT_DIR=${EDK2_DIR}/Build/HiKey/${BUILD_OPTION}_${AARCH64_TOOLCHAIN}`</br>
<br>`# Build fastboot for ARM Trust Firmware. It's used for recovery mode.`</br>
<br>`cd ${BUILD_PATH}/atf-fastboot`</br>
<br>`CROSS_COMPILE=aarch64-linux-gnu- make PLAT=hikey DEBUG=1`</br>
<br>`# Convert DEBUG/RELEASE to debug/release`</br>
<br>`FASTBOOT_BUILD_OPTION=$(echo ${BUILD_OPTION} | tr '[A-Z]' '[a-z]')`</br>
<br>`cd ${EDK2_DIR}`</br>
<br>`# Build UEFI & ARM Trust Firmware`</br>
<br>`${UEFI_TOOLS_DIR}/uefi-build.sh -b ${BUILD_OPTION} -a ../arm-trusted-firmware hikey`</br>
<br>`# Generate l-loader.bin`</br>
<br>`cd ${BUILD_PATH}/l-loader`</br>
<br>`ln -sf ${EDK2_OUTPUT_DIR}/FV/bl1.bin`</br>
<br>`ln -sf ${EDK2_OUTPUT_DIR}/FV/fip.bin`</br>
<br>`ln -sf ${BUILD_PATH}/atf-fastboot/build/hikey/${FASTBOOT_BUILD_OPTION}/bl1.bin fastboot.bin`</br>
<br>`python gen_loader.py -o l-loader.bin --img_bl1=bl1.bin --img_ns_bl1u=BL33_AP_UEFI.fd`</br>
<br>`arm-linux-gnueabihf-gcc -c -o start.o start.S`</br>
<br>`arm-linux-gnueabihf-ld -Bstatic -Tl-loader.lds -Ttext 0xf9800800 start.o -o loader`</br>
<br>`arm-linux-gnueabihf-objcopy -O binary loader temp`</br>
<br>`python gen_loader_hikey.py -o l-loader.bin --img_loader=temp --img_bl1=bl1.bin --img_ns_bl1u=fastboot.bin`</br>
* Generate partition table for aosp. The eMMC capacity is either 4GB or 8GB. Just change "aosp-4g" to "linux-4g" for debian.
<br>`$PTABLE=aosp-4g SECTOR_SIZE=512 bash -x generate_ptable.sh`</br>
3. Setup Console
----------------
* Install ser2net. Use telnet as the console since UEFI fails to display Boot Manager GUI in minicom. __If you don't need Boot Manager GUI, just ignore this section.__
<br>`$sudo apt-get install ser2net`</br>
* Configure ser2net.
<br>`$sudo vi /etc/ser2net.conf`</br>
<br>Append one line for serial-over-USB in below.</br>
<br>_#ser2net.conf_</br>
<br>`2004:telnet:0:/dev/ttyUSB0:115200 8DATABITS NONE 1STOPBIT banner`</br>
* Open the console.
<br>`$telnet localhost 2004`</br>
<br>And you could open the console remotely, too.</br>
4. Flush images in recovery mode
-----------------------------
* Make sure Pin3-Pin4 on J15 are connected for recovery mode. Then power on HiKey.
* Remove the modemmanager package. This package may cause the idt tool failure.
<br>`$sudo apt-get purge modemmanager`</br>
* Run the command to download l-loader.bin into HiKey.
<br>`$sudo python hisi-idt.py -d /dev/ttyUSB1 --img1 l-loader.bin`</br>
* Update images. All aosp or debian images could be fetched from [link](https://builds.96boards.org/).
<br>`$sudo fastboot flash ptable prm_ptable.img`</br>
<br>`$sudo fastboot flash fastboot fip.bin`</br>
<br>`$sudo fastboot flash boot boot.img`</br>
<br>`$sudo fastboot flash cache cache.img`</br>
<br>`$sudo fastboot flash system system.img`</br>
<br>`$sudo fastboot flash userdata userdata.img`</br>
5. Boot UEFI in normal mode
-----------------------------
* Make sure Pin3-Pin4 on J15 are open for normal boot mode. Then power on HiKey.
* Reference [link](https://github.com/96boards-hikey/tools-images-hikey960/blob/master/build-from-source/README-ATF-UEFI-build-from-source.md)
......@@ -42,8 +42,14 @@
******************************************************************************/
#define CPUACTLR_EL1 S3_1_C15_C2_0 /* Instruction def. */
#define CPUACTLR_DTAH (1 << 24)
#define CPUACTLR_ENDCCASCI (1 << 44)
#define CPUACTLR_ENDCCASCI_SHIFT 44
#define CPUACTLR_ENDCCASCI (1 << CPUACTLR_ENDCCASCI_SHIFT)
#define CPUACTLR_RADIS_SHIFT 27
#define CPUACTLR_RADIS (3 << CPUACTLR_RADIS_SHIFT)
#define CPUACTLR_L1RADIS_SHIFT 25
#define CPUACTLR_L1RADIS (3 << CPUACTLR_L1RADIS_SHIFT)
#define CPUACTLR_DTAH_SHIFT 24
#define CPUACTLR_DTAH (1 << CPUACTLR_DTAH_SHIFT)
/*******************************************************************************
* L2 Auxiliary Control register specific definitions.
......
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <arm_gic.h>
#include <assert.h>
#include <bl_common.h>
#include <debug.h>
#include <mmio.h>
#include <platform.h>
#include <platform_def.h>
#include <xlat_tables.h>
#include "../hikey_def.h"
#define MAP_DDR MAP_REGION_FLAT(DDR_BASE, \
DDR_SIZE, \
MT_DEVICE | MT_RW | MT_NS)
#define MAP_DEVICE MAP_REGION_FLAT(DEVICE_BASE, \
DEVICE_SIZE, \
MT_DEVICE | MT_RW | MT_SECURE)
#define MAP_ROM_PARAM MAP_REGION_FLAT(XG2RAM0_BASE, \
BL1_XG2RAM0_OFFSET, \
MT_DEVICE | MT_RO | MT_SECURE)
#define MAP_SRAM MAP_REGION_FLAT(SRAM_BASE, \
SRAM_SIZE, \
MT_DEVICE | MT_RW | MT_SECURE)
/*
* BL1 needs to access the areas of MMC_SRAM.
* BL1 loads BL2 from eMMC into SRAM before DDR initialized.
*/
#define MAP_MMC_SRAM MAP_REGION_FLAT(HIKEY_BL1_MMC_DESC_BASE, \
HIKEY_BL1_MMC_DESC_SIZE + \
HIKEY_BL1_MMC_DATA_SIZE, \
MT_DEVICE | MT_RW | MT_SECURE)
/*
* Table of regions for different BL stages to map using the MMU.
* This doesn't include Trusted RAM as the 'mem_layout' argument passed to
* hikey_init_mmu_elx() will give the available subset of that,
*/
#if IMAGE_BL1
static const mmap_region_t hikey_mmap[] = {
MAP_DEVICE,
MAP_ROM_PARAM,
MAP_MMC_SRAM,
{0}
};
#endif
#if IMAGE_BL2
static const mmap_region_t hikey_mmap[] = {
MAP_DDR,
MAP_DEVICE,
{0}
};
#endif
#if IMAGE_BL31
static const mmap_region_t hikey_mmap[] = {
MAP_DEVICE,
MAP_SRAM,
{0}
};
#endif
/*
* Macro generating the code for the function setting up the pagetables as per
* the platform memory map & initialize the mmu, for the given exception level
*/
#define HIKEY_CONFIGURE_MMU_EL(_el) \
void hikey_init_mmu_el##_el(unsigned long total_base, \
unsigned long total_size, \
unsigned long ro_start, \
unsigned long ro_limit, \
unsigned long coh_start, \
unsigned long coh_limit) \
{ \
mmap_add_region(total_base, total_base, \
total_size, \
MT_MEMORY | MT_RW | MT_SECURE); \
mmap_add_region(ro_start, ro_start, \
ro_limit - ro_start, \
MT_MEMORY | MT_RO | MT_SECURE); \
mmap_add_region(coh_start, coh_start, \
coh_limit - coh_start, \
MT_DEVICE | MT_RW | MT_SECURE); \
mmap_add(hikey_mmap); \
init_xlat_tables(); \
\
enable_mmu_el##_el(0); \
}
/* Define EL1 and EL3 variants of the function initialising the MMU */
HIKEY_CONFIGURE_MMU_EL(1)
HIKEY_CONFIGURE_MMU_EL(3)
unsigned long plat_get_ns_image_entrypoint(void)
{
return HIKEY_NS_IMAGE_OFFSET;
}
unsigned int plat_get_syscnt_freq2(void)
{
return 1200000;
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include "../hikey_def.h"
.globl plat_my_core_pos
.globl platform_mem_init
.globl plat_crash_console_init
.globl plat_crash_console_putc
.globl plat_report_exception
.globl plat_reset_handler
func plat_my_core_pos
mrs x0, mpidr_el1
and x1, x0, #MPIDR_CPU_MASK
and x0, x0, #MPIDR_CLUSTER_MASK
add x0, x1, x0, LSR #6
ret
endfunc plat_my_core_pos
/* -----------------------------------------------------
* void platform_mem_init(void);
*
* We don't need to carry out any memory initialization
* on HIKEY. The Secure RAM is accessible straight away.
* -----------------------------------------------------
*/
func platform_mem_init
ret
endfunc platform_mem_init
/* ---------------------------------------------
* int plat_crash_console_init(void)
* Function to initialize the crash console
* without a C Runtime to print crash report.
* Clobber list : x0, x1, x2
* ---------------------------------------------
*/
func plat_crash_console_init
mov_imm x0, CRASH_CONSOLE_BASE
mov_imm x1, PL011_UART_CLK_IN_HZ
mov_imm x2, PL011_BAUDRATE
b console_core_init
endfunc plat_crash_console_init
/* ---------------------------------------------
* int plat_crash_console_putc(int c)
* Function to print a character on the crash
* console without a C Runtime.
* Clobber list : x1, x2
* ---------------------------------------------
*/
func plat_crash_console_putc
mov_imm x1, CRASH_CONSOLE_BASE
b console_core_putc
endfunc plat_crash_console_putc
/* ---------------------------------------------
* void plat_report_exception(unsigned int type)
* Function to report an unhandled exception
* with platform-specific means.
* On HIKEY platform, it updates the LEDs
* to indicate where we are
* ---------------------------------------------
*/
func plat_report_exception
mov x8, x30
/* Turn on LED according to x0 (0 -- f) */
ldr x2, =0xf7020000
and x1, x0, #1
str w1, [x2, #4]
and x1, x0, #2
str w1, [x2, #8]
and x1, x0, #4
str w1, [x2, #16]
and x1, x0, #8
str w1, [x2, #32]
mrs x2, currentel
and x2, x2, #0xc0
/* Check EL1 */
cmp x2, #0x04
beq plat_report_el1
adr x4, plat_err_str
bl asm_print_str
adr x4, esr_el3_str
bl asm_print_str
mrs x4, esr_el3
bl asm_print_hex
adr x4, elr_el3_str
bl asm_print_str
mrs x4, elr_el3
bl asm_print_hex
b plat_report_end
plat_report_el1:
adr x4, plat_err_str
bl asm_print_str
adr x4, esr_el1_str
bl asm_print_str
mrs x4, esr_el1
bl asm_print_hex
adr x4, elr_el1_str
bl asm_print_str
mrs x4, elr_el1
bl asm_print_hex
plat_report_end:
mov x30, x8
ret
endfunc plat_report_exception
/* -----------------------------------------------------
* void plat_reset_handler(void);
* -----------------------------------------------------
*/
func plat_reset_handler
ret
endfunc plat_reset_handler
.section .rodata.rev_err_str, "aS"
plat_err_str:
.asciz "\nPlatform exception reporting:"
esr_el3_str:
.asciz "\nESR_EL3: "
elr_el3_str:
.asciz "\nELR_EL3: "
esr_el1_str:
.asciz "\nESR_EL1: "
elr_el1_str:
.asciz "\nELR_EL1: "
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <console.h>
#include <debug.h>
#include <dw_mmc.h>
#include <emmc.h>
#include <errno.h>
#include <gpio.h>
#include <hi6220.h>
#include <hi6553.h>
#include <mmio.h>
#include <pl061_gpio.h>
#include <platform.h>
#include <platform_def.h>
#include <sp804_delay_timer.h>
#include <string.h>
#include <tbbr/tbbr_img_desc.h>
#include "../../bl1/bl1_private.h"
#include "hikey_def.h"
#include "hikey_private.h"
/*
* Declarations of linker defined symbols which will help us find the layout
* of trusted RAM
*/
extern unsigned long __COHERENT_RAM_START__;
extern unsigned long __COHERENT_RAM_END__;
/*
* The next 2 constants identify the extents of the coherent memory region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
* page-aligned addresses.
*/
#define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
/* Data structure which holds the extents of the trusted RAM for BL1 */
static meminfo_t bl1_tzram_layout;
enum {
BOOT_NORMAL = 0,
BOOT_USB_DOWNLOAD,
BOOT_UART_DOWNLOAD,
};
meminfo_t *bl1_plat_sec_mem_layout(void)
{
return &bl1_tzram_layout;
}
/*
* Perform any BL1 specific platform actions.
*/
void bl1_early_platform_setup(void)
{
const size_t bl1_size = BL1_RAM_LIMIT - BL1_RAM_BASE;
/* Initialize the console to provide early debug support */
console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
/* Allow BL1 to see the whole Trusted RAM */
bl1_tzram_layout.total_base = BL1_RW_BASE;
bl1_tzram_layout.total_size = BL1_RW_SIZE;
/* Calculate how much RAM BL1 is using and how much remains free */
bl1_tzram_layout.free_base = BL1_RW_BASE;
bl1_tzram_layout.free_size = BL1_RW_SIZE;
reserve_mem(&bl1_tzram_layout.free_base,
&bl1_tzram_layout.free_size,
BL1_RAM_BASE,
bl1_size);
INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
bl1_size);
}
/*
* Perform the very early platform specific architecture setup here. At the
* moment this only does basic initialization. Later architectural setup
* (bl1_arch_setup()) does not do anything platform specific.
*/
void bl1_plat_arch_setup(void)
{
hikey_init_mmu_el3(bl1_tzram_layout.total_base,
bl1_tzram_layout.total_size,
BL1_RO_BASE,
BL1_RO_LIMIT,
BL1_COHERENT_RAM_BASE,
BL1_COHERENT_RAM_LIMIT);
}
static void hikey_sp804_init(void)
{
uint32_t data;
/* select the clock of dual timer0 */
data = mmio_read_32(AO_SC_TIMER_EN0);
while (data & 3) {
data &= ~3;
data |= 3 << 16;
mmio_write_32(AO_SC_TIMER_EN0, data);
data = mmio_read_32(AO_SC_TIMER_EN0);
}
/* enable the pclk of dual timer0 */
data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0)) {
mmio_write_32(AO_SC_PERIPH_CLKEN4, PCLK_TIMER1 | PCLK_TIMER0);
data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
}
/* reset dual timer0 */
data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
mmio_write_32(AO_SC_PERIPH_RSTEN4, PCLK_TIMER1 | PCLK_TIMER0);
do {
data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
} while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0));
/* unreset dual timer0 */
mmio_write_32(AO_SC_PERIPH_RSTDIS4, PCLK_TIMER1 | PCLK_TIMER0);
do {
data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
} while ((data & PCLK_TIMER1) || (data & PCLK_TIMER0));
sp804_timer_init(SP804_TIMER0_BASE, 10, 192);
}
static void hikey_gpio_init(void)
{
pl061_gpio_init();
pl061_gpio_register(GPIO0_BASE, 0);
pl061_gpio_register(GPIO1_BASE, 1);
pl061_gpio_register(GPIO2_BASE, 2);
pl061_gpio_register(GPIO3_BASE, 3);
pl061_gpio_register(GPIO4_BASE, 4);
pl061_gpio_register(GPIO5_BASE, 5);
pl061_gpio_register(GPIO6_BASE, 6);
pl061_gpio_register(GPIO7_BASE, 7);
pl061_gpio_register(GPIO8_BASE, 8);
pl061_gpio_register(GPIO9_BASE, 9);
pl061_gpio_register(GPIO10_BASE, 10);
pl061_gpio_register(GPIO11_BASE, 11);
pl061_gpio_register(GPIO12_BASE, 12);
pl061_gpio_register(GPIO13_BASE, 13);
pl061_gpio_register(GPIO14_BASE, 14);
pl061_gpio_register(GPIO15_BASE, 15);
pl061_gpio_register(GPIO16_BASE, 16);
pl061_gpio_register(GPIO17_BASE, 17);
pl061_gpio_register(GPIO18_BASE, 18);
pl061_gpio_register(GPIO19_BASE, 19);
/* Power on indicator LED (USER_LED1). */
gpio_set_direction(32, GPIO_DIR_OUT); /* LED1 */
gpio_set_value(32, GPIO_LEVEL_HIGH);
gpio_set_direction(33, GPIO_DIR_OUT); /* LED2 */
gpio_set_value(33, GPIO_LEVEL_LOW);
gpio_set_direction(34, GPIO_DIR_OUT); /* LED3 */
gpio_set_direction(35, GPIO_DIR_OUT); /* LED4 */
}
static void hikey_pmussi_init(void)
{
uint32_t data;
/* Initialize PWR_HOLD GPIO */
gpio_set_direction(0, GPIO_DIR_OUT);
gpio_set_value(0, GPIO_LEVEL_LOW);
/*
* After reset, PMUSSI stays in reset mode.
* Now make it out of reset.
*/
mmio_write_32(AO_SC_PERIPH_RSTDIS4,
AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);
do {
data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
} while (data & AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);
/* Set PMUSSI clock latency for read operation. */
data = mmio_read_32(AO_SC_MCU_SUBSYS_CTRL3);
data &= ~AO_SC_MCU_SUBSYS_CTRL3_RCLK_MASK;
data |= AO_SC_MCU_SUBSYS_CTRL3_RCLK_3;
mmio_write_32(AO_SC_MCU_SUBSYS_CTRL3, data);
/* enable PMUSSI clock */
data = AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_CCPU |
AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_MCU;
mmio_write_32(AO_SC_PERIPH_CLKEN5, data);
data = AO_SC_PERIPH_CLKEN4_PCLK_PMUSSI;
mmio_write_32(AO_SC_PERIPH_CLKEN4, data);
gpio_set_value(0, GPIO_LEVEL_HIGH);
}
static void hikey_hi6553_init(void)
{
uint8_t data;
mmio_write_8(HI6553_PERI_EN_MARK, 0x1e);
mmio_write_8(HI6553_NP_REG_ADJ1, 0);
data = DISABLE6_XO_CLK_CONN | DISABLE6_XO_CLK_NFC |
DISABLE6_XO_CLK_RF1 | DISABLE6_XO_CLK_RF2;
mmio_write_8(HI6553_DISABLE6_XO_CLK, data);
/* configure BUCK0 & BUCK1 */
mmio_write_8(HI6553_BUCK01_CTRL2, 0x5e);
mmio_write_8(HI6553_BUCK0_CTRL7, 0x10);
mmio_write_8(HI6553_BUCK1_CTRL7, 0x10);
mmio_write_8(HI6553_BUCK0_CTRL5, 0x1e);
mmio_write_8(HI6553_BUCK1_CTRL5, 0x1e);
mmio_write_8(HI6553_BUCK0_CTRL1, 0xfc);
mmio_write_8(HI6553_BUCK1_CTRL1, 0xfc);
/* configure BUCK2 */
mmio_write_8(HI6553_BUCK2_REG1, 0x4f);
mmio_write_8(HI6553_BUCK2_REG5, 0x99);
mmio_write_8(HI6553_BUCK2_REG6, 0x45);
mdelay(1);
mmio_write_8(HI6553_VSET_BUCK2_ADJ, 0x22);
mdelay(1);
/* configure BUCK3 */
mmio_write_8(HI6553_BUCK3_REG3, 0x02);
mmio_write_8(HI6553_BUCK3_REG5, 0x99);
mmio_write_8(HI6553_BUCK3_REG6, 0x41);
mmio_write_8(HI6553_VSET_BUCK3_ADJ, 0x02);
mdelay(1);
/* configure BUCK4 */
mmio_write_8(HI6553_BUCK4_REG2, 0x9a);
mmio_write_8(HI6553_BUCK4_REG5, 0x99);
mmio_write_8(HI6553_BUCK4_REG6, 0x45);
/* configure LDO20 */
mmio_write_8(HI6553_LDO20_REG_ADJ, 0x50);
mmio_write_8(HI6553_NP_REG_CHG, 0x0f);
mmio_write_8(HI6553_CLK_TOP0, 0x06);
mmio_write_8(HI6553_CLK_TOP3, 0xc0);
mmio_write_8(HI6553_CLK_TOP4, 0x00);
/* configure LDO7 & LDO10 for SD slot */
/* enable LDO7 */
data = mmio_read_8(HI6553_LDO7_REG_ADJ);
data = (data & 0xf8) | 0x2;
mmio_write_8(HI6553_LDO7_REG_ADJ, data);
mdelay(5);
mmio_write_8(HI6553_ENABLE2_LDO1_8, 1 << 6);
mdelay(5);
/* enable LDO10 */
data = mmio_read_8(HI6553_LDO10_REG_ADJ);
data = (data & 0xf8) | 0x5;
mmio_write_8(HI6553_LDO10_REG_ADJ, data);
mdelay(5);
mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 1);
mdelay(5);
/* enable LDO15 */
data = mmio_read_8(HI6553_LDO15_REG_ADJ);
data = (data & 0xf8) | 0x4;
mmio_write_8(HI6553_LDO15_REG_ADJ, data);
mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 6);
mdelay(5);
/* enable LDO19 */
data = mmio_read_8(HI6553_LDO19_REG_ADJ);
data |= 0x7;
mmio_write_8(HI6553_LDO19_REG_ADJ, data);
mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 2);
mdelay(5);
/* enable LDO21 */
data = mmio_read_8(HI6553_LDO21_REG_ADJ);
data = (data & 0xf8) | 0x3;
mmio_write_8(HI6553_LDO21_REG_ADJ, data);
mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 4);
mdelay(5);
/* enable LDO22 */
data = mmio_read_8(HI6553_LDO22_REG_ADJ);
data = (data & 0xf8) | 0x7;
mmio_write_8(HI6553_LDO22_REG_ADJ, data);
mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 5);
mdelay(5);
/* select 32.764KHz */
mmio_write_8(HI6553_CLK19M2_600_586_EN, 0x01);
}
static void init_mmc0_pll(void)
{
unsigned int data;
/* select SYSPLL as the source of MMC0 */
/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
mmio_write_32(PERI_SC_CLK_SEL0, 1 << 5 | 1 << 21);
do {
data = mmio_read_32(PERI_SC_CLK_SEL0);
} while (!(data & (1 << 5)));
/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
mmio_write_32(PERI_SC_CLK_SEL0, 1 << 29);
do {
data = mmio_read_32(PERI_SC_CLK_SEL0);
} while (data & (1 << 13));
mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 0));
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (!(data & (1 << 0)));
data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
data |= 1 << 1;
mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
do {
mmio_write_32(PERI_SC_CLKCFG8BIT1, (1 << 7) | 0xb);
data = mmio_read_32(PERI_SC_CLKCFG8BIT1);
} while ((data & 0xb) != 0xb);
}
static void reset_mmc0_clk(void)
{
unsigned int data;
/* disable mmc0 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC0);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (data & PERI_CLK0_MMC0);
/* enable mmc0 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC0);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (!(data & PERI_CLK0_MMC0));
/* reset mmc0 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC0);
/* bypass mmc0 clock phase */
data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
data |= 3;
mmio_write_32(PERI_SC_PERIPH_CTRL2, data);
/* disable low power */
data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
data |= 1 << 3;
mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (!(data & PERI_RST0_MMC0));
/* unreset mmc0 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC0);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (data & PERI_RST0_MMC0);
}
static void init_media_clk(void)
{
unsigned int data, value;
data = mmio_read_32(PMCTRL_MEDPLLCTRL);
data |= 1;
mmio_write_32(PMCTRL_MEDPLLCTRL, data);
for (;;) {
data = mmio_read_32(PMCTRL_MEDPLLCTRL);
value = 1 << 28;
if ((data & value) == value)
break;
}
data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
data = 1 << 10;
mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
}
static void init_mmc1_pll(void)
{
uint32_t data;
/* select SYSPLL as the source of MMC1 */
/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
mmio_write_32(PERI_SC_CLK_SEL0, 1 << 11 | 1 << 27);
do {
data = mmio_read_32(PERI_SC_CLK_SEL0);
} while (!(data & (1 << 11)));
/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
mmio_write_32(PERI_SC_CLK_SEL0, 1 << 30);
do {
data = mmio_read_32(PERI_SC_CLK_SEL0);
} while (data & (1 << 14));
mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 1));
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (!(data & (1 << 1)));
data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
data |= 1 << 2;
mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
do {
/* 1.2GHz / 50 = 24MHz */
mmio_write_32(PERI_SC_CLKCFG8BIT2, 0x31 | (1 << 7));
data = mmio_read_32(PERI_SC_CLKCFG8BIT2);
} while ((data & 0x31) != 0x31);
}
static void reset_mmc1_clk(void)
{
unsigned int data;
/* disable mmc1 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC1);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (data & PERI_CLK0_MMC1);
/* enable mmc1 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC1);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (!(data & PERI_CLK0_MMC1));
/* reset mmc1 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC1);
/* bypass mmc1 clock phase */
data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
data |= 3 << 2;
mmio_write_32(PERI_SC_PERIPH_CTRL2, data);
/* disable low power */
data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
data |= 1 << 4;
mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (!(data & PERI_RST0_MMC1));
/* unreset mmc0 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC1);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (data & PERI_RST0_MMC1);
}
/* Initialize PLL of both eMMC and SD controllers. */
static void hikey_mmc_pll_init(void)
{
init_mmc0_pll();
reset_mmc0_clk();
init_media_clk();
dsb();
init_mmc1_pll();
reset_mmc1_clk();
}
/*
* Function which will perform any remaining platform-specific setup that can
* occur after the MMU and data cache have been enabled.
*/
void bl1_platform_setup(void)
{
dw_mmc_params_t params;
assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) &&
((SRAM_BASE + SRAM_SIZE) >=
(HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE)));
hikey_sp804_init();
hikey_gpio_init();
hikey_pmussi_init();
hikey_hi6553_init();
hikey_mmc_pll_init();
memset(&params, 0, sizeof(dw_mmc_params_t));
params.reg_base = DWMMC0_BASE;
params.desc_base = HIKEY_BL1_MMC_DESC_BASE;
params.desc_size = 1 << 20;
params.clk_rate = 24 * 1000 * 1000;
params.bus_width = EMMC_BUS_WIDTH_8;
params.flags = EMMC_FLAG_CMD23;
dw_mmc_init(&params);
hikey_io_setup();
}
/*
* The following function checks if Firmware update is needed,
* by checking if TOC in FIP image is valid or not.
*/
unsigned int bl1_plat_get_next_image_id(void)
{
int32_t boot_mode;
unsigned int ret;
boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE);
switch (boot_mode) {
case BOOT_NORMAL:
ret = BL2_IMAGE_ID;
break;
case BOOT_USB_DOWNLOAD:
case BOOT_UART_DOWNLOAD:
ret = NS_BL1U_IMAGE_ID;
break;
default:
WARN("Invalid boot mode is found:%d\n", boot_mode);
panic();
}
return ret;
}
image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
{
unsigned int index = 0;
while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
if (bl1_tbbr_image_descs[index].image_id == image_id)
return &bl1_tbbr_image_descs[index];
index++;
}
return NULL;
}
void bl1_plat_set_ep_info(unsigned int image_id,
entry_point_info_t *ep_info)
{
unsigned int data = 0;
if (image_id == BL2_IMAGE_ID)
return;
inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
__asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data));
do {
data |= 3 << 20;
__asm__ volatile ("msr cpacr_el1, %0" : : "r"(data));
__asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data));
} while ((data & (3 << 20)) != (3 << 20));
INFO("cpacr_el1:0x%x\n", data);
ep_info->args.arg0 = 0xffff & read_mpidr();
ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
DISABLE_ALL_EXCEPTIONS);
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <console.h>
#include <debug.h>
#include <dw_mmc.h>
#include <emmc.h>
#include <errno.h>
#include <hi6220.h>
#include <hisi_mcu.h>
#include <hisi_sram_map.h>
#include <mmio.h>
#include <platform_def.h>
#include <sp804_delay_timer.h>
#include <string.h>
#include "hikey_def.h"
#include "hikey_private.h"
/*
* The next 2 constants identify the extents of the code & RO data region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses.
*/
#define BL2_RO_BASE (unsigned long)(&__RO_START__)
#define BL2_RO_LIMIT (unsigned long)(&__RO_END__)
/*
* The next 2 constants identify the extents of the coherent memory region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
* page-aligned addresses.
*/
#define BL2_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL2_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
static meminfo_t bl2_tzram_layout __aligned(CACHE_WRITEBACK_GRANULE);
typedef struct bl2_to_bl31_params_mem {
bl31_params_t bl31_params;
image_info_t bl31_image_info;
image_info_t bl32_image_info;
image_info_t bl33_image_info;
entry_point_info_t bl33_ep_info;
entry_point_info_t bl32_ep_info;
entry_point_info_t bl31_ep_info;
} bl2_to_bl31_params_mem_t;
static bl2_to_bl31_params_mem_t bl31_params_mem;
meminfo_t *bl2_plat_sec_mem_layout(void)
{
return &bl2_tzram_layout;
}
void bl2_plat_get_scp_bl2_meminfo(meminfo_t *scp_bl2_meminfo)
{
scp_bl2_meminfo->total_base = SCP_BL2_BASE;
scp_bl2_meminfo->total_size = SCP_BL2_SIZE;
scp_bl2_meminfo->free_base = SCP_BL2_BASE;
scp_bl2_meminfo->free_size = SCP_BL2_SIZE;
}
int bl2_plat_handle_scp_bl2(struct image_info *scp_bl2_image_info)
{
/* Enable MCU SRAM */
hisi_mcu_enable_sram();
/* Load MCU binary into SRAM */
hisi_mcu_load_image(scp_bl2_image_info->image_base,
scp_bl2_image_info->image_size);
/* Let MCU running */
hisi_mcu_start_run();
INFO("%s: MCU PC is at 0x%x\n",
__func__, mmio_read_32(AO_SC_MCU_SUBSYS_STAT2));
INFO("%s: AO_SC_PERIPH_CLKSTAT4 is 0x%x\n",
__func__, mmio_read_32(AO_SC_PERIPH_CLKSTAT4));
return 0;
}
bl31_params_t *bl2_plat_get_bl31_params(void)
{
bl31_params_t *bl2_to_bl31_params = NULL;
/*
* Initialise the memory for all the arguments that needs to
* be passed to BL3-1
*/
memset(&bl31_params_mem, 0, sizeof(bl2_to_bl31_params_mem_t));
/* Assign memory for TF related information */
bl2_to_bl31_params = &bl31_params_mem.bl31_params;
SET_PARAM_HEAD(bl2_to_bl31_params, PARAM_BL31, VERSION_1, 0);
/* Fill BL3-1 related information */
bl2_to_bl31_params->bl31_image_info = &bl31_params_mem.bl31_image_info;
SET_PARAM_HEAD(bl2_to_bl31_params->bl31_image_info, PARAM_IMAGE_BINARY,
VERSION_1, 0);
/* Fill BL3-2 related information if it exists */
#if BL32_BASE
bl2_to_bl31_params->bl32_ep_info = &bl31_params_mem.bl32_ep_info;
SET_PARAM_HEAD(bl2_to_bl31_params->bl32_ep_info, PARAM_EP,
VERSION_1, 0);
bl2_to_bl31_params->bl32_image_info = &bl31_params_mem.bl32_image_info;
SET_PARAM_HEAD(bl2_to_bl31_params->bl32_image_info, PARAM_IMAGE_BINARY,
VERSION_1, 0);
#endif
/* Fill BL3-3 related information */
bl2_to_bl31_params->bl33_ep_info = &bl31_params_mem.bl33_ep_info;
SET_PARAM_HEAD(bl2_to_bl31_params->bl33_ep_info,
PARAM_EP, VERSION_1, 0);
/* BL3-3 expects to receive the primary CPU MPID (through x0) */
bl2_to_bl31_params->bl33_ep_info->args.arg0 = 0xffff & read_mpidr();
bl2_to_bl31_params->bl33_image_info = &bl31_params_mem.bl33_image_info;
SET_PARAM_HEAD(bl2_to_bl31_params->bl33_image_info, PARAM_IMAGE_BINARY,
VERSION_1, 0);
return bl2_to_bl31_params;
}
struct entry_point_info *bl2_plat_get_bl31_ep_info(void)
{
return &bl31_params_mem.bl31_ep_info;
}
void bl2_plat_set_bl31_ep_info(image_info_t *image,
entry_point_info_t *bl31_ep_info)
{
SET_SECURITY_STATE(bl31_ep_info->h.attr, SECURE);
bl31_ep_info->spsr = SPSR_64(MODE_EL3, MODE_SP_ELX,
DISABLE_ALL_EXCEPTIONS);
}
void bl2_plat_set_bl33_ep_info(image_info_t *image,
entry_point_info_t *bl33_ep_info)
{
unsigned long el_status;
unsigned int mode;
/* Figure out what mode we enter the non-secure world in */
el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT;
el_status &= ID_AA64PFR0_ELX_MASK;
if (el_status)
mode = MODE_EL2;
else
mode = MODE_EL1;
/*
* TODO: Consider the possibility of specifying the SPSR in
* the FIP ToC and allowing the platform to have a say as
* well.
*/
bl33_ep_info->spsr = SPSR_64(mode, MODE_SP_ELX,
DISABLE_ALL_EXCEPTIONS);
SET_SECURITY_STATE(bl33_ep_info->h.attr, NON_SECURE);
}
void bl2_plat_flush_bl31_params(void)
{
flush_dcache_range((unsigned long)&bl31_params_mem,
sizeof(bl2_to_bl31_params_mem_t));
}
void bl2_plat_get_bl33_meminfo(meminfo_t *bl33_meminfo)
{
bl33_meminfo->total_base = DDR_BASE;
bl33_meminfo->total_size = DDR_SIZE;
bl33_meminfo->free_base = DDR_BASE;
bl33_meminfo->free_size = DDR_SIZE;
}
static void reset_dwmmc_clk(void)
{
unsigned int data;
/* disable mmc0 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC0);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (data & PERI_CLK0_MMC0);
/* enable mmc0 bus clock */
mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC0);
do {
data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
} while (!(data & PERI_CLK0_MMC0));
/* reset mmc0 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC0);
/* bypass mmc0 clock phase */
data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
data |= 3;
mmio_write_32(PERI_SC_PERIPH_CTRL2, data);
/* disable low power */
data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
data |= 1 << 3;
mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (!(data & PERI_RST0_MMC0));
/* unreset mmc0 clock domain */
mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC0);
do {
data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
} while (data & PERI_RST0_MMC0);
}
static void hikey_boardid_init(void)
{
u_register_t midr;
midr = read_midr();
mmio_write_32(MEMORY_AXI_CHIP_ADDR, midr);
INFO("[BDID] [%x] midr: 0x%x\n", MEMORY_AXI_CHIP_ADDR,
(unsigned int)midr);
mmio_write_32(MEMORY_AXI_BOARD_TYPE_ADDR, 0);
mmio_write_32(MEMORY_AXI_BOARD_ID_ADDR, 0x2b);
mmio_write_32(ACPU_ARM64_FLAGA, 0x1234);
mmio_write_32(ACPU_ARM64_FLAGB, 0x5678);
}
static void hikey_sd_init(void)
{
/* switch pinmux to SD */
mmio_write_32(IOMG_SD_CLK, IOMG_MUX_FUNC0);
mmio_write_32(IOMG_SD_CMD, IOMG_MUX_FUNC0);
mmio_write_32(IOMG_SD_DATA0, IOMG_MUX_FUNC0);
mmio_write_32(IOMG_SD_DATA1, IOMG_MUX_FUNC0);
mmio_write_32(IOMG_SD_DATA2, IOMG_MUX_FUNC0);
mmio_write_32(IOMG_SD_DATA3, IOMG_MUX_FUNC0);
mmio_write_32(IOCG_SD_CLK, IOCG_INPUT_16MA);
mmio_write_32(IOCG_SD_CMD, IOCG_INPUT_12MA);
mmio_write_32(IOCG_SD_DATA0, IOCG_INPUT_12MA);
mmio_write_32(IOCG_SD_DATA1, IOCG_INPUT_12MA);
mmio_write_32(IOCG_SD_DATA2, IOCG_INPUT_12MA);
mmio_write_32(IOCG_SD_DATA3, IOCG_INPUT_12MA);
/* set SD Card detect as nopull */
mmio_write_32(IOCG_GPIO8, 0);
}
static void hikey_jumper_init(void)
{
/* set jumper detect as nopull */
mmio_write_32(IOCG_GPIO24, 0);
/* set jumper detect as GPIO */
mmio_write_32(IOMG_GPIO24, IOMG_MUX_FUNC0);
}
void bl2_early_platform_setup(meminfo_t *mem_layout)
{
dw_mmc_params_t params;
/* Initialize the console to provide early debug support */
console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
/* Setup the BL2 memory layout */
bl2_tzram_layout = *mem_layout;
/* Clear SRAM since it'll be used by MCU right now. */
memset((void *)SRAM_BASE, 0, SRAM_SIZE);
sp804_timer_init(SP804_TIMER0_BASE, 10, 192);
dsb();
hikey_ddr_init();
hikey_boardid_init();
init_acpu_dvfs();
hikey_sd_init();
hikey_jumper_init();
reset_dwmmc_clk();
memset(&params, 0, sizeof(dw_mmc_params_t));
params.reg_base = DWMMC0_BASE;
params.desc_base = HIKEY_MMC_DESC_BASE;
params.desc_size = 1 << 20;
params.clk_rate = 24 * 1000 * 1000;
params.bus_width = EMMC_BUS_WIDTH_8;
params.flags = EMMC_FLAG_CMD23;
dw_mmc_init(&params);
hikey_io_setup();
}
void bl2_plat_arch_setup(void)
{
hikey_init_mmu_el1(bl2_tzram_layout.total_base,
bl2_tzram_layout.total_size,
BL2_RO_BASE,
BL2_RO_LIMIT,
BL2_COHERENT_RAM_BASE,
BL2_COHERENT_RAM_LIMIT);
}
void bl2_platform_setup(void)
{
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arm_gic.h>
#include <assert.h>
#include <bl_common.h>
#include <cci.h>
#include <console.h>
#include <debug.h>
#include <errno.h>
#include <gicv2.h>
#include <hi6220.h>
#include <hisi_ipc.h>
#include <hisi_pwrc.h>
#include <platform_def.h>
#include "hikey_def.h"
#include "hikey_private.h"
/*
* The next 2 constants identify the extents of the code & RO data region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses.
*/
#define BL31_RO_BASE (unsigned long)(&__RO_START__)
#define BL31_RO_LIMIT (unsigned long)(&__RO_END__)
/*
* The next 2 constants identify the extents of the coherent memory region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
* page-aligned addresses.
*/
#define BL31_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL31_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
static entry_point_info_t bl32_ep_info;
static entry_point_info_t bl33_ep_info;
/******************************************************************************
* On a GICv2 system, the Group 1 secure interrupts are treated as Group 0
* interrupts.
*****************************************************************************/
const unsigned int g0_interrupt_array[] = {
IRQ_SEC_PHY_TIMER,
IRQ_SEC_SGI_0
};
/*
* Ideally `arm_gic_data` structure definition should be a `const` but it is
* kept as modifiable for overwriting with different GICD and GICC base when
* running on FVP with VE memory map.
*/
gicv2_driver_data_t hikey_gic_data = {
.gicd_base = PLAT_ARM_GICD_BASE,
.gicc_base = PLAT_ARM_GICC_BASE,
.g0_interrupt_num = ARRAY_SIZE(g0_interrupt_array),
.g0_interrupt_array = g0_interrupt_array,
};
static const int cci_map[] = {
CCI400_SL_IFACE3_CLUSTER_IX,
CCI400_SL_IFACE4_CLUSTER_IX
};
entry_point_info_t *bl31_plat_get_next_image_ep_info(unsigned int type)
{
entry_point_info_t *next_image_info;
next_image_info = (type == NON_SECURE) ? &bl33_ep_info : &bl32_ep_info;
/* None of the images on this platform can have 0x0 as the entrypoint */
if (next_image_info->pc)
return next_image_info;
return NULL;
}
void bl31_early_platform_setup(bl31_params_t *from_bl2,
void *plat_params_from_bl2)
{
/* Initialize the console to provide early debug support */
console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
/* Initialize CCI driver */
cci_init(CCI400_BASE, cci_map, ARRAY_SIZE(cci_map));
/*
* Copy BL3-2 and BL3-3 entry point information.
* They are stored in Secure RAM, in BL2's address space.
*/
bl32_ep_info = *from_bl2->bl32_ep_info;
bl33_ep_info = *from_bl2->bl33_ep_info;
}
void bl31_plat_arch_setup(void)
{
hikey_init_mmu_el3(BL31_BASE,
BL31_LIMIT - BL31_BASE,
BL31_RO_BASE,
BL31_RO_LIMIT,
BL31_COHERENT_RAM_BASE,
BL31_COHERENT_RAM_LIMIT);
}
void bl31_platform_setup(void)
{
/* Initialize the GIC driver, cpu and distributor interfaces */
gicv2_driver_init(&hikey_gic_data);
gicv2_distif_init();
gicv2_pcpu_distif_init();
gicv2_cpuif_enable();
hisi_ipc_init();
hisi_pwrc_setup();
}
void bl31_plat_runtime_setup(void)
{
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <debug.h>
#include <errno.h>
#include <hi6220.h>
#include <hi6553.h>
#include <mmio.h>
#include <sp804_delay_timer.h>
enum {
DDR_FREQ_533M = 0,
DDR_FREQ_800M,
};
static void init_pll(void)
{
unsigned int data;
data = mmio_read_32((0xf7032000 + 0x000));
data |= 0x1;
mmio_write_32((0xf7032000 + 0x000), data);
dsb();
do {
data = mmio_read_32((0xf7032000 + 0x000));
} while (!(data & (1 << 28)));
data = mmio_read_32((0xf7800000 + 0x000));
data &= ~0x007;
data |= 0x004;
mmio_write_32((0xf7800000 + 0x000), data);
dsb();
do {
data = mmio_read_32((0xf7800000 + 0x014));
data &= 0x007;
} while (data != 0x004);
mmio_write_32(PERI_SC_PERIPH_CTRL14, 0x2101);
data = mmio_read_32(PERI_SC_PERIPH_STAT1);
mmio_write_32(0xf7032000 + 0x02c, 0x5110103e);
data = mmio_read_32(0xf7032000 + 0x050);
data |= 1 << 28;
mmio_write_32(0xf7032000 + 0x050, data);
mmio_write_32(PERI_SC_PERIPH_CTRL14, 0x2101);
mdelay(1);
data = mmio_read_32(PERI_SC_PERIPH_STAT1);
NOTICE("syspll frequency:%dHz\n", data);
}
static void init_freq(void)
{
unsigned int data, tmp;
unsigned int cpuext_cfg, ddr_cfg;
mmio_write_32((0xf7032000 + 0x374), 0x4a);
mmio_write_32((0xf7032000 + 0x368), 0xda);
mmio_write_32((0xf7032000 + 0x36c), 0x01);
mmio_write_32((0xf7032000 + 0x370), 0x01);
mmio_write_32((0xf7032000 + 0x360), 0x60);
mmio_write_32((0xf7032000 + 0x364), 0x60);
mmio_write_32((0xf7032000 + 0x114), 0x1000);
data = mmio_read_32((0xf7032000 + 0x110));
data |= (3 << 12);
mmio_write_32((0xf7032000 + 0x110), data);
data = mmio_read_32((0xf7032000 + 0x110));
data |= (1 << 4);
mmio_write_32((0xf7032000 + 0x110), data);
data = mmio_read_32((0xf7032000 + 0x110));
data &= ~0x7;
data |= 0x5;
mmio_write_32((0xf7032000 + 0x110), data);
dsb();
mdelay(10);
do {
data = mmio_read_32((0xf6504000 + 0x008));
data &= (3 << 20);
} while (data != (3 << 20));
dsb();
mdelay(10);
data = mmio_read_32((0xf6504000 + 0x054));
data &= ~((1 << 0) | (1 << 11));
mmio_write_32((0xf6504000 + 0x054), data);
mdelay(10);
data = mmio_read_32((0xf7032000 + 0x104));
data &= ~(3 << 8);
data |= (1 << 8);
mmio_write_32((0xf7032000 + 0x104), data);
data = mmio_read_32((0xf7032000 + 0x100));
data |= (1 << 0);
mmio_write_32((0xf7032000 + 0x100), data);
dsb();
do {
data = mmio_read_32((0xf7032000 + 0x100));
data &= (1 << 2);
} while (data != (1 << 2));
data = mmio_read_32((0xf6504000 + 0x06c));
data &= ~0xffff;
data |= 0x56;
mmio_write_32((0xf6504000 + 0x06c), data);
data = mmio_read_32((0xf6504000 + 0x06c));
data &= ~(0xffffff << 8);
data |= 0xc7a << 8;
mmio_write_32((0xf6504000 + 0x06c), data);
data = mmio_read_32((0xf6504000 + 0x058));
data &= ((1 << 13) - 1);
data |= 0xccb;
mmio_write_32((0xf6504000 + 0x058), data);
mmio_write_32((0xf6504000 + 0x060), 0x1fff);
mmio_write_32((0xf6504000 + 0x064), 0x1ffffff);
mmio_write_32((0xf6504000 + 0x068), 0x7fffffff);
mmio_write_32((0xf6504000 + 0x05c), 0x1);
data = mmio_read_32((0xf6504000 + 0x054));
data &= ~(0xf << 12);
data |= 1 << 12;
mmio_write_32((0xf6504000 + 0x054), data);
dsb();
data = mmio_read_32((0xf7032000 + 0x000));
data &= ~(1 << 0);
mmio_write_32((0xf7032000 + 0x000), data);
mmio_write_32((0xf7032000 + 0x004), 0x5110207d);
mmio_write_32((0xf7032000 + 0x134), 0x10000005);
data = mmio_read_32((0xf7032000 + 0x134));
data = mmio_read_32((0xf7032000 + 0x000));
data |= (1 << 0);
mmio_write_32((0xf7032000 + 0x000), data);
mmio_write_32((0xf7032000 + 0x368), 0x100da);
data = mmio_read_32((0xf7032000 + 0x378));
data &= ~((1 << 7) - 1);
data |= 0x6b;
mmio_write_32((0xf7032000 + 0x378), data);
dsb();
do {
data = mmio_read_32((0xf7032000 + 0x378));
tmp = data & 0x7f;
data = (data & (0x7f << 8)) >> 8;
if (data != tmp)
continue;
data = mmio_read_32((0xf7032000 + 0x37c));
} while (!(data & 1));
data = mmio_read_32((0xf7032000 + 0x104));
data &= ~((3 << 0) |
(3 << 8));
cpuext_cfg = 1;
ddr_cfg = 1;
data |= cpuext_cfg | (ddr_cfg << 8);
mmio_write_32((0xf7032000 + 0x104), data);
dsb();
do {
data = mmio_read_32((0xf7032000 + 0x104));
tmp = (data & (3 << 16)) >> 16;
if (cpuext_cfg != tmp)
continue;
tmp = (data & (3 << 24)) >> 24;
if (ddr_cfg != tmp)
continue;
data = mmio_read_32((0xf7032000 + 0x000));
data &= 1 << 28;
} while (!data);
data = mmio_read_32((0xf7032000 + 0x100));
data &= ~(1 << 0);
mmio_write_32((0xf7032000 + 0x100), data);
dsb();
do {
data = mmio_read_32((0xf7032000 + 0x100));
data &= (1 << 1);
} while (data != (1 << 1));
mdelay(1000);
data = mmio_read_32((0xf6504000 + 0x054));
data &= ~(1 << 28);
mmio_write_32((0xf6504000 + 0x054), data);
dsb();
data = mmio_read_32((0xf7032000 + 0x110));
data &= ~((1 << 4) |
(3 << 12));
mmio_write_32((0xf7032000 + 0x110), data);
}
int cat_533mhz_800mhz(void)
{
unsigned int data, i;
unsigned int bdl[5];
data = mmio_read_32((0xf712c000 + 0x1c8));
data &= 0xfffff0f0;
data |= 0x100f0f;
mmio_write_32((0xf712c000 + 0x1c8), data);
for (i = 0; i < 0x20; i++) {
mmio_write_32((0xf712c000 + 0x1d4), 0xc0000);
data = (i << 0x10) + i;
mmio_write_32((0xf712c000 + 0x140), data);
mmio_write_32((0xf712c000 + 0x144), data);
mmio_write_32((0xf712c000 + 0x148), data);
mmio_write_32((0xf712c000 + 0x14c), data);
mmio_write_32((0xf712c000 + 0x150), data);
data = mmio_read_32((0xf712c000 + 0x070));
data |= 0x80000;
mmio_write_32((0xf712c000 + 0x070), data);
data = mmio_read_32((0xf712c000 + 0x070));
data &= 0xfff7ffff;
mmio_write_32((0xf712c000 + 0x070), data);
mmio_write_32((0xf712c000 + 0x004), 0x8000);
mmio_write_32((0xf712c000 + 0x004), 0x0);
mmio_write_32((0xf712c000 + 0x004), 0x801);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
if (!(data & 0x400)) {
mdelay(10);
return 0;
}
WARN("lpddr3 cat fail\n");
data = mmio_read_32((0xf712c000 + 0x1d4));
if ((data & 0x1f00) && ((data & 0x1f) == 0)) {
bdl[0] = mmio_read_32((0xf712c000 + 0x140));
bdl[1] = mmio_read_32((0xf712c000 + 0x144));
bdl[2] = mmio_read_32((0xf712c000 + 0x148));
bdl[3] = mmio_read_32((0xf712c000 + 0x14c));
bdl[4] = mmio_read_32((0xf712c000 + 0x150));
if ((!(bdl[0] & 0x1f001f)) || (!(bdl[1] & 0x1f001f)) ||
(!(bdl[2] & 0x1f001f)) || (!(bdl[3] & 0x1f001f)) ||
(!(bdl[4] & 0x1f001f))) {
WARN("lpddr3 cat deskew error\n");
if (i == 0x1f) {
WARN("addrnbdl is max\n");
return -EINVAL;
}
mmio_write_32((0xf712c000 + 0x008), 0x400);
} else {
WARN("lpddr3 cat other error1\n");
return -EINVAL;
}
} else {
WARN("lpddr3 cat other error2\n");
return -EINVAL;
}
}
return -EINVAL;
}
static void ddrx_rdet(void)
{
unsigned int data, rdet, bdl[4];
data = mmio_read_32((0xf712c000 + 0x0d0));
data &= 0xf800ffff;
data |= 0x8f0000;
mmio_write_32((0xf712c000 + 0x0d0), data);
data = mmio_read_32((0xf712c000 + 0x0dc));
data &= 0xfffffff0;
data |= 0xf;
mmio_write_32((0xf712c000 + 0x0dc), data);
data = mmio_read_32((0xf712c000 + 0x070));
data |= 0x80000;
mmio_write_32((0xf712c000 + 0x070), data);
data = mmio_read_32((0xf712c000 + 0x070));
data &= 0xfff7ffff;
mmio_write_32((0xf712c000 + 0x070), data);
mmio_write_32((0xf712c000 + 0x004), 0x8000);
mmio_write_32((0xf712c000 + 0x004), 0);
data = mmio_read_32((0xf712c000 + 0x0d0));
data &= ~0xf0000000;
data |= 0x80000000;
mmio_write_32((0xf712c000 + 0x0d0), data);
mmio_write_32((0xf712c000 + 0x004), 0x101);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (!(data & 1));
data = mmio_read_32((0xf712c000 + 0x008));
if (data & 0x100)
WARN("rdet lbs fail\n");
bdl[0] = mmio_read_32((0xf712c000 + 0x22c)) & 0x7f;
bdl[1] = mmio_read_32((0xf712c000 + 0x2ac)) & 0x7f;
bdl[2] = mmio_read_32((0xf712c000 + 0x32c)) & 0x7f;
bdl[3] = mmio_read_32((0xf712c000 + 0x3ac)) & 0x7f;
do {
data = mmio_read_32((0xf712c000 + 0x22c));
data &= ~0x7f;
data |= bdl[0];
mmio_write_32((0xf712c000 + 0x22c), data);
data = mmio_read_32((0xf712c000 + 0x2ac));
data &= ~0x7f;
data |= bdl[1];
mmio_write_32((0xf712c000 + 0x2ac), data);
data = mmio_read_32((0xf712c000 + 0x32c));
data &= ~0x7f;
data |= bdl[2];
mmio_write_32((0xf712c000 + 0x32c), data);
data = mmio_read_32((0xf712c000 + 0x3ac));
data &= ~0x7f;
data |= bdl[3];
mmio_write_32((0xf712c000 + 0x3ac), data);
data = mmio_read_32((0xf712c000 + 0x070));
data |= 0x80000;
mmio_write_32((0xf712c000 + 0x070), data);
data = mmio_read_32((0xf712c000 + 0x070));
data &= 0xfff7ffff;
mmio_write_32((0xf712c000 + 0x070), data);
mmio_write_32((0xf712c000 + 0x004), 0x8000);
mmio_write_32((0xf712c000 + 0x004), 0);
data = mmio_read_32((0xf712c000 + 0x0d0));
data &= ~0xf0000000;
data |= 0x40000000;
mmio_write_32((0xf712c000 + 0x0d0), data);
mmio_write_32((0xf712c000 + 0x004), 0x101);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
rdet = data & 0x100;
if (rdet) {
INFO("rdet ds fail\n");
mmio_write_32((0xf712c000 + 0x008), 0x100);
}
bdl[0]++;
bdl[1]++;
bdl[2]++;
bdl[3]++;
} while (rdet);
data = mmio_read_32((0xf712c000 + 0x0d0));
data &= ~0xf0000000;
data |= 0x30000000;
mmio_write_32((0xf712c000 + 0x0d0), data);
mmio_write_32((0xf712c000 + 0x004), 0x101);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
if (data & 0x100)
INFO("rdet rbs av fail\n");
}
static void ddrx_wdet(void)
{
unsigned int data, wdet, zero_bdl, dq[4];
int i;
data = mmio_read_32((0xf712c000 + 0x0d0));
data &= ~0xf;
data |= 0xf;
mmio_write_32((0xf712c000 + 0x0d0), data);
data = mmio_read_32((0xf712c000 + 0x070));
data |= 0x80000;
mmio_write_32((0xf712c000 + 0x070), data);
data = mmio_read_32((0xf712c000 + 0x070));
data &= ~0x80000;
mmio_write_32((0xf712c000 + 0x070), data);
mmio_write_32((0xf712c000 + 0x004), 0x8000);
mmio_write_32((0xf712c000 + 0x004), 0);
data = mmio_read_32((0xf712c000 + 0x0d0));
data &= ~0xf000;
data |= 0x8000;
mmio_write_32((0xf712c000 + 0x0d0), data);
mmio_write_32((0xf712c000 + 0x004), 0x201);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
if (data & 0x200)
INFO("wdet lbs fail\n");
dq[0] = mmio_read_32((0xf712c000 + 0x234)) & 0x1f00;
dq[1] = mmio_read_32((0xf712c000 + 0x2b4)) & 0x1f00;
dq[2] = mmio_read_32((0xf712c000 + 0x334)) & 0x1f00;
dq[3] = mmio_read_32((0xf712c000 + 0x3b4)) & 0x1f00;
do {
mmio_write_32((0xf712c000 + 0x234), dq[0]);
mmio_write_32((0xf712c000 + 0x2b4), dq[1]);
mmio_write_32((0xf712c000 + 0x334), dq[2]);
mmio_write_32((0xf712c000 + 0x3b4), dq[3]);
data = mmio_read_32((0xf712c000 + 0x070));
data |= 0x80000;
mmio_write_32((0xf712c000 + 0x070), data);
data = mmio_read_32((0xf712c000 + 0x070));
data &= ~0x80000;
mmio_write_32((0xf712c000 + 0x070), data);
mmio_write_32((0xf712c000 + 0x004), 0x8000);
mmio_write_32((0xf712c000 + 0x004), 0);
data = mmio_read_32((0xf712c000 + 0x0d0));
data &= ~0xf000;
data |= 0x4000;
mmio_write_32((0xf712c000 + 0x0d0), data);
mmio_write_32((0xf712c000 + 0x004), 0x201);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
wdet = data & 0x200;
if (wdet) {
INFO("wdet ds fail\n");
mmio_write_32((0xf712c000 + 0x008), 0x200);
}
mdelay(10);
for (i = 0; i < 4; i++) {
data = mmio_read_32((0xf712c000 + 0x210 + i * 0x80));
if ((!(data & 0x1f)) || (!(data & 0x1f00)) ||
(!(data & 0x1f0000)) || (!(data & 0x1f000000)))
zero_bdl = 1;
data = mmio_read_32((0xf712c000 + 0x214 + i * 0x80));
if ((!(data & 0x1f)) || (!(data & 0x1f00)) ||
(!(data & 0x1f0000)) || (!(data & 0x1f000000)))
zero_bdl = 1;
data = mmio_read_32((0xf712c000 + 0x218 + i * 0x80));
if (!(data & 0x1f))
zero_bdl = 1;
if (zero_bdl) {
if (i == 0)
dq[0] = dq[0] - 0x100;
if (i == 1)
dq[1] = dq[1] - 0x100;
if (i == 2)
dq[2] = dq[2] - 0x100;
if (i == 3)
dq[3] = dq[3] - 0x100;
}
}
} while (wdet);
data = mmio_read_32((0xf712c000 + 0x0d0));
data &= ~0xf000;
data |= 0x3000;
mmio_write_32((0xf712c000 + 0x0d0), data);
mmio_write_32((0xf712c000 + 0x004), 0x201);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
if (data & 0x200)
INFO("wdet rbs av fail\n");
}
static void set_ddrc_533mhz(void)
{
unsigned int data;
mmio_write_32((0xf7032000 + 0x580), 0x3);
mmio_write_32((0xf7032000 + 0x5a8), 0x11111);
data = mmio_read_32((0xf7032000 + 0x104));
data |= 0x100;
mmio_write_32((0xf7032000 + 0x104), data);
mmio_write_32((0xf7030000 + 0x050), 0x30);
mmio_write_32((0xf7030000 + 0x240), 0x5ffff);
mmio_write_32((0xf7030000 + 0x344), 0xf5ff);
mmio_write_32((0xf712c000 + 0x00c), 0x400);
mmio_write_32((0xf712c000 + 0x018), 0x7);
mmio_write_32((0xf712c000 + 0x090), 0x6400000);
mmio_write_32((0xf712c000 + 0x258), 0x640);
mmio_write_32((0xf712c000 + 0x2d8), 0x640);
mmio_write_32((0xf712c000 + 0x358), 0x640);
mmio_write_32((0xf712c000 + 0x3d8), 0x640);
mmio_write_32((0xf712c000 + 0x018), 0x0);
mmio_write_32((0xf712c000 + 0x0b0), 0xf00000f);
mmio_write_32((0xf712c000 + 0x0b4), 0xf);
mmio_write_32((0xf712c000 + 0x088), 0x3fff801);
mmio_write_32((0xf712c000 + 0x070), 0x8940000);
data = mmio_read_32((0xf712c000 + 0x078));
data |= 4;
mmio_write_32((0xf712c000 + 0x078), data);
mmio_write_32((0xf712c000 + 0x01c), 0x8000080);
data = mmio_read_32((0xf712c000 + 0x020));
data &= 0xfffffffe;
mmio_write_32((0xf712c000 + 0x020), data);
mmio_write_32((0xf712c000 + 0x1d4), 0xc0000);
mmio_write_32((0xf712c000 + 0x010), 0x500000f);
mmio_write_32((0xf712c000 + 0x014), 0x10);
data = mmio_read_32((0xf712c000 + 0x1e4));
data &= 0xffffff00;
mmio_write_32((0xf712c000 + 0x1e4), data);
mmio_write_32((0xf712c000 + 0x030), 0x9dd87855);
mmio_write_32((0xf712c000 + 0x034), 0xa7138bb);
mmio_write_32((0xf712c000 + 0x038), 0x20091477);
mmio_write_32((0xf712c000 + 0x03c), 0x84534e16);
mmio_write_32((0xf712c000 + 0x040), 0x3008817);
mmio_write_32((0xf712c000 + 0x064), 0x106c3);
mmio_write_32((0xf712c000 + 0x068), 0xff0a0000);
data = mmio_read_32((0xf712c000 + 0x070));
data &= 0xffff0000;
data |= 0x305;
mmio_write_32((0xf712c000 + 0x070), data);
data = mmio_read_32((0xf712c000 + 0x048));
data |= 0x40000000;
mmio_write_32((0xf712c000 + 0x048), data);
data = mmio_read_32((0xf712c000 + 0x020));
data &= ~0x10;
mmio_write_32((0xf712c000 + 0x020), data);
data = mmio_read_32((0xf712c000 + 0x080));
data &= ~0x2000;
mmio_write_32((0xf712c000 + 0x080), data);
mmio_write_32((0xf712c000 + 0x270), 0x3);
mmio_write_32((0xf712c000 + 0x2f0), 0x3);
mmio_write_32((0xf712c000 + 0x370), 0x3);
mmio_write_32((0xf712c000 + 0x3f0), 0x3);
mmio_write_32((0xf712c000 + 0x048), 0xd0420900);
mmio_write_32((0xf7128000 + 0x040), 0x0);
mmio_write_32((0xf712c000 + 0x004), 0x140f);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
if (data & 0x7fe) {
NOTICE("failed to init lpddr3 rank0 dram phy\n");
return;
}
NOTICE("succeed to init lpddr3 rank0 dram phy\n");
}
static void set_ddrc_800mhz(void)
{
unsigned int data;
mmio_write_32((0xf7032000 + 0x580), 0x2);
mmio_write_32((0xf7032000 + 0x5a8), 0x1003);
data = mmio_read_32((0xf7032000 + 0x104));
data &= 0xfffffcff;
mmio_write_32((0xf7032000 + 0x104), data);
mmio_write_32((0xf7030000 + 0x050), 0x30);
mmio_write_32((0xf7030000 + 0x240), 0x5ffff);
mmio_write_32((0xf7030000 + 0x344), 0xf5ff);
mmio_write_32((0xf712c000 + 0x00c), 0x400);
mmio_write_32((0xf712c000 + 0x018), 0x7);
mmio_write_32((0xf712c000 + 0x090), 0x5400000);
mmio_write_32((0xf712c000 + 0x258), 0x540);
mmio_write_32((0xf712c000 + 0x2d8), 0x540);
mmio_write_32((0xf712c000 + 0x358), 0x540);
mmio_write_32((0xf712c000 + 0x3d8), 0x540);
mmio_write_32((0xf712c000 + 0x018), 0x0);
mmio_write_32((0xf712c000 + 0x0b0), 0xf00000f);
mmio_write_32((0xf712c000 + 0x0b4), 0xf);
mmio_write_32((0xf712c000 + 0x088), 0x3fff801);
mmio_write_32((0xf712c000 + 0x070), 0x8940000);
data = mmio_read_32((0xf712c000 + 0x078));
data |= 4;
mmio_write_32((0xf712c000 + 0x078), data);
mmio_write_32((0xf712c000 + 0x01c), 0x8000080);
data = mmio_read_32((0xf712c000 + 0x020));
data &= 0xfffffffe;
mmio_write_32((0xf712c000 + 0x020), data);
mmio_write_32((0xf712c000 + 0x1d4), 0xc0000);
mmio_write_32((0xf712c000 + 0x010), 0x500000f);
mmio_write_32((0xf712c000 + 0x014), 0x10);
data = mmio_read_32((0xf712c000 + 0x1e4));
data &= 0xffffff00;
mmio_write_32((0xf712c000 + 0x1e4), data);
mmio_write_32((0xf712c000 + 0x030), 0xe663ab77);
mmio_write_32((0xf712c000 + 0x034), 0xea952db);
mmio_write_32((0xf712c000 + 0x038), 0x200d1cb1);
mmio_write_32((0xf712c000 + 0x03c), 0xc67d0721);
mmio_write_32((0xf712c000 + 0x040), 0x3008aa1);
mmio_write_32((0xf712c000 + 0x064), 0x11a43);
mmio_write_32((0xf712c000 + 0x068), 0xff0a0000);
data = mmio_read_32((0xf712c000 + 0x070));
data &= 0xffff0000;
data |= 0x507;
mmio_write_32((0xf712c000 + 0x070), data);
data = mmio_read_32((0xf712c000 + 0x048));
data |= 0x40000000;
mmio_write_32((0xf712c000 + 0x048), data);
data = mmio_read_32((0xf712c000 + 0x020));
data &= 0xffffffef;
mmio_write_32((0xf712c000 + 0x020), data);
data = mmio_read_32((0xf712c000 + 0x080));
data &= 0xffffdfff;
mmio_write_32((0xf712c000 + 0x080), data);
mmio_write_32((0xf712c000 + 0x270), 0x3);
mmio_write_32((0xf712c000 + 0x2f0), 0x3);
mmio_write_32((0xf712c000 + 0x370), 0x3);
mmio_write_32((0xf712c000 + 0x3f0), 0x3);
mmio_write_32((0xf712c000 + 0x048), 0xd0420900);
mmio_write_32((0xf7128000 + 0x040), 0x2001);
mmio_write_32((0xf712c000 + 0x004), 0x140f);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
if (data & 0x7fe) {
WARN("failed to init lpddr3 rank0 dram phy\n");
return;
}
}
static void ddrc_common_init(int ddr800)
{
unsigned int data;
mmio_write_32((0xf7120000 + 0x020), 0x1);
mmio_write_32((0xf7120000 + 0x100), 0x1700);
mmio_write_32((0xf7120000 + 0x104), 0x71040004);
mmio_write_32((0xf7121400 + 0x104), 0xf);
mmio_write_32((0xf7121800 + 0x104), 0xf);
mmio_write_32((0xf7121800 + 0x104), 0xf);
mmio_write_32((0xf7121c00 + 0x104), 0xf);
mmio_write_32((0xf7122000 + 0x104), 0xf);
mmio_write_32((0xf7128000 + 0x02c), 0x6);
mmio_write_32((0xf7128000 + 0x020), 0x1);
mmio_write_32((0xf7128000 + 0x028), 0x310201);
mmio_write_32((0xf712c000 + 0x1e4), 0xfe007600);
mmio_write_32((0xf7128000 + 0x01c), 0xaf001);
data = mmio_read_32((0xf7128000 + 0x280));
data |= 1 << 7;
mmio_write_32((0xf7128000 + 0x280), data);
mmio_write_32((0xf7128000 + 0x244), 0x3);
if (ddr800)
mmio_write_32((0xf7128000 + 0x240), 167 * 400000 / 1024);
else
mmio_write_32((0xf7128000 + 0x240), 167 * 533000 / 1024);
data = mmio_read_32((0xf712c000 + 0x080));
data &= 0xffff;
data |= 0x4002000;
mmio_write_32((0xf712c000 + 0x080), data);
mmio_write_32((0xf7128000 + 0x000), 0x0);
do {
data = mmio_read_32((0xf7128000 + 0x294));
} while (data & 1);
mmio_write_32((0xf7128000 + 0x000), 0x2);
}
static int dienum_det_and_rowcol_cfg(void)
{
unsigned int data;
mmio_write_32((0xf7128000 + 0x210), 0x87);
mmio_write_32((0xf7128000 + 0x218), 0x10000);
mmio_write_32((0xf7128000 + 0x00c), 0x1);
do {
data = mmio_read_32((0xf7128000 + 0x00c));
} while (data & 1);
data = mmio_read_32((0xf7128000 + 0x4a8)) & 0xfc;
switch (data) {
case 0x18:
mmio_write_32((0xf7128000 + 0x060), 0x132);
mmio_write_32((0xf7128000 + 0x064), 0x132);
mmio_write_32((0xf7120000 + 0x100), 0x1600);
mmio_write_32((0xf7120000 + 0x104), 0x71040004);
break;
case 0x1c:
mmio_write_32((0xf7128000 + 0x060), 0x142);
mmio_write_32((0xf7128000 + 0x064), 0x142);
mmio_write_32((0xf7120000 + 0x100), 0x1700);
mmio_write_32((0xf7120000 + 0x104), 0x71040004);
break;
case 0x58:
mmio_write_32((0xf7128000 + 0x060), 0x133);
mmio_write_32((0xf7128000 + 0x064), 0x133);
mmio_write_32((0xf7120000 + 0x100), 0x1700);
mmio_write_32((0xf7120000 + 0x104), 0x71040004);
break;
default:
break;
}
if (!data)
return -EINVAL;
return 0;
}
static int detect_ddr_chip_info(void)
{
unsigned int data, mr5, mr6, mr7;
mmio_write_32((0xf7128000 + 0x210), 0x57);
mmio_write_32((0xf7128000 + 0x218), 0x10000);
mmio_write_32((0xf7128000 + 0x00c), 0x1);
do {
data = mmio_read_32((0xf7128000 + 0x00c));
} while (data & 1);
data = mmio_read_32((0xf7128000 + 0x4a8));
mr5 = data & 0xff;
switch (mr5) {
case 1:
INFO("Samsung DDR\n");
break;
case 6:
INFO("Hynix DDR\n");
break;
case 3:
INFO("Elpida DDR\n");
break;
default:
INFO("DDR from other vendors\n");
break;
}
mmio_write_32((0xf7128000 + 0x210), 0x67);
mmio_write_32((0xf7128000 + 0x218), 0x10000);
mmio_write_32((0xf7128000 + 0x00c), 0x1);
do {
data = mmio_read_32((0xf7128000 + 0x00c));
} while (data & 1);
data = mmio_read_32((0xf7128000 + 0x4a8));
mr6 = data & 0xff;
mmio_write_32((0xf7128000 + 0x210), 0x77);
mmio_write_32((0xf7128000 + 0x218), 0x10000);
mmio_write_32((0xf7128000 + 0x00c), 0x1);
do {
data = mmio_read_32((0xf7128000 + 0x00c));
} while (data & 1);
data = mmio_read_32((0xf7128000 + 0x4a8));
mr7 = data & 0xff;
data = mr5 + (mr6 << 8) + (mr7 << 16);
return data;
}
int lpddr3_freq_init(int freq)
{
unsigned int data;
if (freq == DDR_FREQ_800M) {
set_ddrc_800mhz();
INFO("%s, set ddrc 800mhz\n", __func__);
} else {
set_ddrc_533mhz();
INFO("%s, set ddrc 533mhz\n", __func__);
}
mmio_write_32((0xf712c000 + 0x004), 0xf1);
if (freq == DDR_FREQ_800M)
mmio_write_32((0xf7128000 + 0x050), 0x100023);
else
mmio_write_32((0xf7128000 + 0x050), 0x100123);
mmio_write_32((0xf7128000 + 0x060), 0x133);
mmio_write_32((0xf7128000 + 0x064), 0x133);
mmio_write_32((0xf7128000 + 0x200), 0xa1000);
if (freq == DDR_FREQ_800M) {
mmio_write_32((0xf7128000 + 0x100), 0x755a9d12);
mmio_write_32((0xf7128000 + 0x104), 0x1753b055);
mmio_write_32((0xf7128000 + 0x108), 0x7401505f);
mmio_write_32((0xf7128000 + 0x10c), 0x578ca244);
mmio_write_32((0xf7128000 + 0x110), 0x10700000);
mmio_write_32((0xf7128000 + 0x114), 0x13141306);
} else {
mmio_write_32((0xf7128000 + 0x100), 0xb77b6718);
mmio_write_32((0xf7128000 + 0x104), 0x1e82a071);
mmio_write_32((0xf7128000 + 0x108), 0x9501c07e);
mmio_write_32((0xf7128000 + 0x10c), 0xaf50c255);
mmio_write_32((0xf7128000 + 0x110), 0x10b00000);
mmio_write_32((0xf7128000 + 0x114), 0x13181908);
}
mmio_write_32((0xf7128000 + 0x118), 0x44);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
if (data & 0x7fe) {
NOTICE("fail to init ddr3 rank0\n");
return -EFAULT;
}
INFO("init ddr3 rank0\n");
ddrx_rdet();
ddrx_wdet();
data = mmio_read_32((0xf712c000 + 0x048));
data |= 1;
mmio_write_32((0xf712c000 + 0x048), data);
mmio_write_32((0xf712c000 + 0x004), 0x21);
do {
data = mmio_read_32((0xf712c000 + 0x004));
} while (data & 1);
data = mmio_read_32((0xf712c000 + 0x008));
if (data & 0x7fe)
NOTICE("ddr3 rank1 init failure\n");
else
INFO("ddr3 rank1 init pass\n");
data = mmio_read_32((0xf712c000 + 0x048));
data &= ~0xf;
mmio_write_32((0xf712c000 + 0x048), data);
return 0;
}
static void init_ddr(int freq)
{
unsigned int data;
int ret;
data = mmio_read_32((0xf7032000 + 0x030));
data |= 1;
mmio_write_32((0xf7032000 + 0x030), data);
data = mmio_read_32((0xf7032000 + 0x010));
data |= 1;
mmio_write_32((0xf7032000 + 0x010), data);
udelay(100);
do {
data = mmio_read_32((0xf7032000 + 0x030));
data &= 3 << 28;
} while (data != (3 << 28));
do {
data = mmio_read_32((0xf7032000 + 0x010));
data &= 3 << 28;
} while (data != (3 << 28));
ret = lpddr3_freq_init(freq);
if (ret)
return;
}
static void init_ddrc_qos(void)
{
unsigned int port, data;
mmio_write_32((0xf7124000 + 0x088), 1);
port = 0;
mmio_write_32((0xf7120000 + 0x200 + port * 0x10), 0x1210);
mmio_write_32((0xf7120000 + 0x204 + port * 0x10), 0x11111111);
mmio_write_32((0xf7120000 + 0x208 + port * 0x10), 0x11111111);
mmio_write_32((0xf7120000 + 0x400 + 0 * 0x10), 0x001d0007);
for (port = 3; port <= 4; port++) {
mmio_write_32((0xf7120000 + 0x200 + port * 0x10), 0x1210);
mmio_write_32((0xf7120000 + 0x204 + port * 0x10), 0x77777777);
mmio_write_32((0xf7120000 + 0x208 + port * 0x10), 0x77777777);
}
port = 1;
mmio_write_32((0xf7120000 + 0x200 + port * 0x10), 0x30000);
mmio_write_32((0xf7120000 + 0x204 + port * 0x10), 0x1234567);
mmio_write_32((0xf7120000 + 0x208 + port * 0x10), 0x1234567);
mmio_write_32((0xf7124000 + 0x1f0), 0);
mmio_write_32((0xf7124000 + 0x0bc), 0x3020100);
mmio_write_32((0xf7124000 + 0x0d0), 0x3020100);
mmio_write_32((0xf7124000 + 0x1f4), 0x01000100);
mmio_write_32((0xf7124000 + 0x08c + 0 * 4), 0xd0670402);
mmio_write_32((0xf7124000 + 0x068 + 0 * 4), 0x31);
mmio_write_32((0xf7124000 + 0x000), 0x7);
data = mmio_read_32((0xf7124000 + 0x09c));
data &= ~0xff0000;
data |= 0x400000;
mmio_write_32((0xf7124000 + 0x09c), data);
data = mmio_read_32((0xf7124000 + 0x0ac));
data &= ~0xff0000;
data |= 0x400000;
mmio_write_32((0xf7124000 + 0x0ac), data);
port = 2;
mmio_write_32((0xf7120000 + 0x200 + port * 0x10), 0x30000);
mmio_write_32((0xf7120000 + 0x204 + port * 0x10), 0x1234567);
mmio_write_32((0xf7120000 + 0x208 + port * 0x10), 0x1234567);
mmio_write_32((0xf7124000 + 0x09c), 0xff7fff);
mmio_write_32((0xf7124000 + 0x0a0), 0xff);
mmio_write_32((0xf7124000 + 0x0ac), 0xff7fff);
mmio_write_32((0xf7124000 + 0x0b0), 0xff);
mmio_write_32((0xf7124000 + 0x0bc), 0x3020100);
mmio_write_32((0xf7124000 + 0x0d0), 0x3020100);
}
static void ddr_phy_reset(void)
{
mmio_write_32(0xf7030340, 0xa000);
mmio_write_32(0xf7030344, 0xa000);
}
void hikey_ddr_init(void)
{
uint32_t data;
init_pll();
init_freq();
/*
* Init DDR with 533MHz. Otherwise, DDR initialization
* may fail on 800MHz on some boards.
*/
ddr_phy_reset();
init_ddr(DDR_FREQ_533M);
/* Init DDR with 800MHz. */
ddr_phy_reset();
init_ddr(DDR_FREQ_800M);
ddrc_common_init(1);
dienum_det_and_rowcol_cfg();
detect_ddr_chip_info();
data = mmio_read_32(0xf7032000 + 0x010);
data &= ~0x1;
mmio_write_32(0xf7032000 + 0x010, data);
data = mmio_read_32(0xf7032000 + 0x010);
/*
* Test memory access. Do not use address 0x0 because the compiler
* may assume it is not a valid address and generate incorrect code
* (GCC 4.9.1 without -fno-delete-null-pointer-checks for instance).
*/
mmio_write_32(0x4, 0xa5a55a5a);
INFO("ddr test value:0x%x\n", mmio_read_32(0x4));
init_ddrc_qos();
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __HIKEY_DEF_H__
#define __HIKEY_DEF_H__
#include <common_def.h>
#include <tbbr_img_def.h>
/* Always assume DDR is 1GB size. */
#define DDR_BASE 0x0
#define DDR_SIZE 0x80000000
#define DEVICE_BASE 0xF4000000
#define DEVICE_SIZE 0x05800000
#define XG2RAM0_BASE 0xF9800000
#define XG2RAM0_SIZE 0x00400000
#define SRAM_BASE 0xFFF80000
#define SRAM_SIZE 0x00012000
/*
* BL1 is stored in XG2RAM0_HIRQ that is 784KB large (0xF980_0000~0xF98C_4000).
*/
#define ONCHIPROM_PARAM_BASE (XG2RAM0_BASE + 0x700)
#define LOADER_RAM_BASE (XG2RAM0_BASE + 0x800)
#define BL1_XG2RAM0_OFFSET 0x1000
/*
* PL011 related constants
*/
#define PL011_UART0_BASE 0xF8015000
#define PL011_UART3_BASE 0xF7113000
#define PL011_BAUDRATE 115200
#define PL011_UART_CLK_IN_HZ 19200000
#define HIKEY_USB_DESC_BASE (DDR_BASE + 0x00800000)
#define HIKEY_USB_DESC_SIZE 0x00100000
#define HIKEY_USB_DATA_BASE (DDR_BASE + 0x10000000)
#define HIKEY_USB_DATA_SIZE 0x10000000
#define HIKEY_FB_BUFFER_BASE (HIKEY_USB_DATA_BASE)
#define HIKEY_FB_BUFFER_SIZE HIKEY_USB_DATA_SIZE
#define HIKEY_FB_DOWNLOAD_BASE (HIKEY_FB_BUFFER_BASE + \
HIKEY_FB_BUFFER_SIZE)
#define HIKEY_FB_DOWNLOAD_SIZE HIKEY_USB_DATA_SIZE
#define HIKEY_USB_DESC_IN_BASE (DDR_BASE + 0x00800000)
#define HIKEY_USB_DESC_IN_SIZE 0x00040000
#define HIKEY_USB_DESC_EP0_OUT_BASE (HIKEY_USB_DESC_IN_BASE + \
HIKEY_USB_DESC_IN_SIZE)
#define HIKEY_USB_DESC_EP0_OUT_SIZE 0x00040000
#define HIKEY_USB_DESC_EPX_OUT_BASE (HIKEY_USB_DESC_EP0_OUT_BASE + \
HIKEY_USB_DESC_EP0_OUT_SIZE)
#define HIKEY_USB_DESC_EPX_OUT_SIZE 0x00080000
#define HIKEY_MMC_DESC_BASE (DDR_BASE + 0x03000000)
#define HIKEY_MMC_DESC_SIZE 0x00100000
/*
* HIKEY_MMC_DATA_BASE & HIKEY_MMC_DATA_SIZE are shared between fastboot
* and eMMC driver. Since it could avoid to memory copy.
* So this SRAM region is used twice. First, it's used in BL1 as temporary
* buffer in eMMC driver. Second, it's used by MCU in BL2. The SRAM region
* needs to be clear before used in BL2.
*/
#define HIKEY_MMC_DATA_BASE (DDR_BASE + 0x10000000)
#define HIKEY_MMC_DATA_SIZE 0x20000000
#define HIKEY_NS_IMAGE_OFFSET (DDR_BASE + 0x35000000)
#define HIKEY_BL1_MMC_DESC_BASE (SRAM_BASE)
#define HIKEY_BL1_MMC_DESC_SIZE 0x00001000
#define HIKEY_BL1_MMC_DATA_BASE (HIKEY_BL1_MMC_DESC_BASE + \
HIKEY_BL1_MMC_DESC_SIZE)
#define HIKEY_BL1_MMC_DATA_SIZE 0x0000B000
#define EMMC_BASE 0
#define HIKEY_FIP_BASE (EMMC_BASE + (4 << 20))
#define HIKEY_FIP_MAX_SIZE (8 << 20)
#define HIKEY_EMMC_RPMB_BASE (EMMC_BASE + 0)
#define HIKEY_EMMC_RPMB_MAX_SIZE (128 << 10)
#define HIKEY_EMMC_USERDATA_BASE (EMMC_BASE + 0)
#define HIKEY_EMMC_USERDATA_MAX_SIZE (4 << 30)
/*
* GIC400 interrupt handling related constants
*/
#define IRQ_SEC_PHY_TIMER 29
#define IRQ_SEC_SGI_0 8
#define IRQ_SEC_SGI_1 9
#define IRQ_SEC_SGI_2 10
#define IRQ_SEC_SGI_3 11
#define IRQ_SEC_SGI_4 12
#define IRQ_SEC_SGI_5 13
#define IRQ_SEC_SGI_6 14
#define IRQ_SEC_SGI_7 15
#define IRQ_SEC_SGI_8 16
#endif /* __HIKEY_DEF_H__ */
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <emmc.h>
#include <errno.h>
#include <firmware_image_package.h>
#include <io_block.h>
#include <io_driver.h>
#include <io_fip.h>
#include <io_memmap.h>
#include <io_storage.h>
#include <mmio.h>
#include <platform_def.h>
#include <semihosting.h> /* For FOPEN_MODE_... */
#include <string.h>
#include "hikey_private.h"
#define EMMC_BLOCK_SHIFT 9
/* Page 1024, since only a few pages before 2048 are used as partition table */
#define SERIALNO_EMMC_OFFSET (1024 * 512)
struct plat_io_policy {
uintptr_t *dev_handle;
uintptr_t image_spec;
int (*check)(const uintptr_t spec);
};
static const io_dev_connector_t *emmc_dev_con;
static uintptr_t emmc_dev_handle;
static const io_dev_connector_t *fip_dev_con;
static uintptr_t fip_dev_handle;
static int check_emmc(const uintptr_t spec);
static int check_fip(const uintptr_t spec);
static const io_block_spec_t emmc_fip_spec = {
.offset = HIKEY_FIP_BASE,
.length = HIKEY_FIP_MAX_SIZE,
};
static const io_block_dev_spec_t emmc_dev_spec = {
/* It's used as temp buffer in block driver. */
#if IMAGE_BL1
.buffer = {
.offset = HIKEY_BL1_MMC_DATA_BASE,
.length = HIKEY_BL1_MMC_DATA_SIZE,
},
#else
.buffer = {
.offset = HIKEY_MMC_DATA_BASE,
.length = HIKEY_MMC_DATA_SIZE,
},
#endif
.ops = {
.read = emmc_read_blocks,
.write = emmc_write_blocks,
},
.block_size = EMMC_BLOCK_SIZE,
};
static const io_uuid_spec_t bl2_uuid_spec = {
.uuid = UUID_TRUSTED_BOOT_FIRMWARE_BL2,
};
static const io_uuid_spec_t bl31_uuid_spec = {
.uuid = UUID_EL3_RUNTIME_FIRMWARE_BL31,
};
static const io_uuid_spec_t bl33_uuid_spec = {
.uuid = UUID_NON_TRUSTED_FIRMWARE_BL33,
};
static const io_uuid_spec_t scp_bl2_uuid_spec = {
.uuid = UUID_SCP_FIRMWARE_SCP_BL2,
};
static const struct plat_io_policy policies[] = {
[FIP_IMAGE_ID] = {
&emmc_dev_handle,
(uintptr_t)&emmc_fip_spec,
check_emmc
},
[BL2_IMAGE_ID] = {
&fip_dev_handle,
(uintptr_t)&bl2_uuid_spec,
check_fip
},
[SCP_BL2_IMAGE_ID] = {
&fip_dev_handle,
(uintptr_t)&scp_bl2_uuid_spec,
check_fip
},
[BL31_IMAGE_ID] = {
&fip_dev_handle,
(uintptr_t)&bl31_uuid_spec,
check_fip
},
[BL33_IMAGE_ID] = {
&fip_dev_handle,
(uintptr_t)&bl33_uuid_spec,
check_fip
}
};
static int check_emmc(const uintptr_t spec)
{
int result;
uintptr_t local_handle;
result = io_dev_init(emmc_dev_handle, (uintptr_t)NULL);
if (result == 0) {
result = io_open(emmc_dev_handle, spec, &local_handle);
if (result == 0)
io_close(local_handle);
}
return result;
}
static int check_fip(const uintptr_t spec)
{
int result;
uintptr_t local_image_handle;
/* See if a Firmware Image Package is available */
result = io_dev_init(fip_dev_handle, (uintptr_t)FIP_IMAGE_ID);
if (result == 0) {
result = io_open(fip_dev_handle, spec, &local_image_handle);
if (result == 0) {
VERBOSE("Using FIP\n");
io_close(local_image_handle);
}
}
return result;
}
void hikey_io_setup(void)
{
int result;
result = register_io_dev_block(&emmc_dev_con);
assert(result == 0);
result = register_io_dev_fip(&fip_dev_con);
assert(result == 0);
result = io_dev_open(emmc_dev_con, (uintptr_t)&emmc_dev_spec,
&emmc_dev_handle);
assert(result == 0);
result = io_dev_open(fip_dev_con, (uintptr_t)NULL, &fip_dev_handle);
assert(result == 0);
/* Ignore improbable errors in release builds */
(void)result;
}
/* Return an IO device handle and specification which can be used to access
* an image. Use this to enforce platform load policy
*/
int plat_get_image_source(unsigned int image_id, uintptr_t *dev_handle,
uintptr_t *image_spec)
{
int result;
const struct plat_io_policy *policy;
assert(image_id < ARRAY_SIZE(policies));
policy = &policies[image_id];
result = policy->check(policy->image_spec);
assert(result == 0);
*image_spec = policy->image_spec;
*dev_handle = *(policy->dev_handle);
return result;
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <cci.h>
#include <debug.h>
#include <gicv2.h>
#include <hi6220.h>
#include <hisi_ipc.h>
#include <hisi_pwrc.h>
#include <hisi_sram_map.h>
#include <mmio.h>
#include <psci.h>
#include "hikey_def.h"
#define HIKEY_CLUSTER_STATE_ON 0
#define HIKEY_CLUSTER_STATE_OFF 1
static uintptr_t hikey_sec_entrypoint;
/* There're two clusters in HiKey. */
static int hikey_cluster_state[] = {HIKEY_CLUSTER_STATE_OFF,
HIKEY_CLUSTER_STATE_OFF};
/*******************************************************************************
* Handler called when a power domain is about to be turned on. The
* level and mpidr determine the affinity instance.
******************************************************************************/
static int hikey_pwr_domain_on(u_register_t mpidr)
{
int cpu, cluster;
int curr_cluster;
cluster = MPIDR_AFFLVL1_VAL(mpidr);
cpu = MPIDR_AFFLVL0_VAL(mpidr);
curr_cluster = MPIDR_AFFLVL1_VAL(read_mpidr());
if (cluster != curr_cluster)
hisi_ipc_cluster_on(cpu, cluster);
hisi_pwrc_set_core_bx_addr(cpu, cluster, hikey_sec_entrypoint);
hisi_ipc_cpu_on(cpu, cluster);
return 0;
}
static void hikey_pwr_domain_on_finish(const psci_power_state_t *target_state)
{
unsigned long mpidr;
int cpu, cluster;
mpidr = read_mpidr();
cluster = MPIDR_AFFLVL1_VAL(mpidr);
cpu = MPIDR_AFFLVL0_VAL(mpidr);
if (hikey_cluster_state[cluster] == HIKEY_CLUSTER_STATE_OFF) {
/*
* Enable CCI coherency for this cluster.
* No need for locks as no other cpu is active at the moment.
*/
cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(mpidr));
hikey_cluster_state[cluster] = HIKEY_CLUSTER_STATE_ON;
}
/* Zero the jump address in the mailbox for this cpu */
hisi_pwrc_set_core_bx_addr(cpu, cluster, 0);
/* Program the GIC per-cpu distributor or re-distributor interface */
gicv2_pcpu_distif_init();
/* Enable the GIC cpu interface */
gicv2_cpuif_enable();
}
/*******************************************************************************
* Handler called when a power domain is about to be turned off. The
* target_state encodes the power state that each level should transition to.
******************************************************************************/
void hikey_pwr_domain_off(const psci_power_state_t *target_state)
{
unsigned long mpidr;
int cpu, cluster;
gicv2_cpuif_disable();
mpidr = read_mpidr();
cluster = MPIDR_AFFLVL1_VAL(mpidr);
cpu = MPIDR_AFFLVL0_VAL(mpidr);
if (target_state->pwr_domain_state[MPIDR_AFFLVL1] ==
PLAT_MAX_OFF_STATE) {
hisi_ipc_spin_lock(HISI_IPC_SEM_CPUIDLE);
cci_disable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(mpidr));
hisi_ipc_spin_unlock(HISI_IPC_SEM_CPUIDLE);
hisi_ipc_cluster_off(cpu, cluster);
hikey_cluster_state[cluster] = HIKEY_CLUSTER_STATE_OFF;
}
hisi_ipc_cpu_off(cpu, cluster);
}
/*******************************************************************************
* Handler to reboot the system.
******************************************************************************/
static void __dead2 hikey_system_reset(void)
{
/* Send the system reset request */
mmio_write_32(AO_SC_SYS_STAT0, 0x48698284);
isb();
dsb();
wfi();
panic();
}
/*******************************************************************************
* Handler called to check the validity of the power state parameter.
******************************************************************************/
int hikey_validate_power_state(unsigned int power_state,
psci_power_state_t *req_state)
{
int pstate = psci_get_pstate_type(power_state);
int pwr_lvl = psci_get_pstate_pwrlvl(power_state);
int i;
assert(req_state);
if (pwr_lvl > PLAT_MAX_PWR_LVL)
return PSCI_E_INVALID_PARAMS;
/* Sanity check the requested state */
if (pstate == PSTATE_TYPE_STANDBY) {
/*
* It's possible to enter standby only on power level 0
* Ignore any other power level.
*/
if (pwr_lvl != MPIDR_AFFLVL0)
return PSCI_E_INVALID_PARAMS;
req_state->pwr_domain_state[MPIDR_AFFLVL0] =
PLAT_MAX_RET_STATE;
} else {
for (i = MPIDR_AFFLVL0; i <= pwr_lvl; i++)
req_state->pwr_domain_state[i] =
PLAT_MAX_OFF_STATE;
}
/*
* We expect the 'state id' to be zero.
*/
if (psci_get_pstate_id(power_state))
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* Handler called to check the validity of the non secure entrypoint.
******************************************************************************/
static int hikey_validate_ns_entrypoint(uintptr_t entrypoint)
{
/*
* Check if the non secure entrypoint lies within the non
* secure DRAM.
*/
if ((entrypoint > DDR_BASE) && (entrypoint < (DDR_BASE + DDR_SIZE)))
return PSCI_E_SUCCESS;
return PSCI_E_INVALID_ADDRESS;
}
/*******************************************************************************
* Export the platform handlers to enable psci to invoke them
******************************************************************************/
static const plat_psci_ops_t hikey_psci_ops = {
.cpu_standby = NULL,
.pwr_domain_on = hikey_pwr_domain_on,
.pwr_domain_on_finish = hikey_pwr_domain_on_finish,
.pwr_domain_off = hikey_pwr_domain_off,
.pwr_domain_suspend = NULL,
.pwr_domain_suspend_finish = NULL,
.system_off = NULL,
.system_reset = hikey_system_reset,
.validate_power_state = hikey_validate_power_state,
.validate_ns_entrypoint = hikey_validate_ns_entrypoint,
.get_sys_suspend_power_state = NULL,
};
/*******************************************************************************
* Export the platform specific power ops and initialize Power Controller
******************************************************************************/
int plat_setup_psci_ops(uintptr_t sec_entrypoint,
const plat_psci_ops_t **psci_ops)
{
hikey_sec_entrypoint = sec_entrypoint;
/*
* Initialize PSCI ops struct
*/
*psci_ops = &hikey_psci_ops;
return 0;
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __HIKEY_PRIVATE_H__
#define __HIKEY_PRIVATE_H__
#include <bl_common.h>
#define RANDOM_MAX 0x7fffffffffffffff
#define RANDOM_MAGIC 0x9a4dbeaf
struct random_serial_num {
uint64_t magic;
uint64_t data;
char serialno[32];
};
/*
* Function and variable prototypes
*/
void hikey_init_mmu_el1(unsigned long total_base,
unsigned long total_size,
unsigned long ro_start,
unsigned long ro_limit,
unsigned long coh_start,
unsigned long coh_limit);
void hikey_init_mmu_el3(unsigned long total_base,
unsigned long total_size,
unsigned long ro_start,
unsigned long ro_limit,
unsigned long coh_start,
unsigned long coh_limit);
void hikey_ddr_init(void);
void hikey_io_setup(void);
int hikey_get_partition_size(const char *arg, int left, char *response);
int hikey_get_partition_type(const char *arg, int left, char *response);
int hikey_erase(const char *arg);
int hikey_flash(const char *arg);
int hikey_oem(const char *arg);
int hikey_reboot(const char *arg);
const char *hikey_init_serialno(void);
int hikey_read_serialno(struct random_serial_num *serialno);
int hikey_write_serialno(struct random_serial_num *serialno);
void init_acpu_dvfs(void);
#endif /* __HIKEY_PRIVATE_H__ */
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <platform_def.h>
#include <psci.h>
/*
* The HiKey power domain tree descriptor. The cluster power domains
* are arranged so that when the PSCI generic code creates the power
* domain tree, the indices of the CPU power domain nodes it allocates
* match the linear indices returned by plat_core_pos_by_mpidr().
*/
const unsigned char hikey_power_domain_tree_desc[] = {
/* Number of root nodes */
1,
/* Number of clusters */
PLATFORM_CLUSTER_COUNT,
/* Number of CPU cores */
PLATFORM_CORE_COUNT
};
/*******************************************************************************
* This function returns the HiKey topology tree information.
******************************************************************************/
const unsigned char *plat_get_power_domain_tree_desc(void)
{
return hikey_power_domain_tree_desc;
}
/*******************************************************************************
* This function implements a part of the critical interface between the psci
* generic layer and the platform that allows the former to query the platform
* to convert an MPIDR to a unique linear index. An error code (-1) is returned
* in case the MPIDR is invalid.
******************************************************************************/
int plat_core_pos_by_mpidr(u_register_t mpidr)
{
unsigned int cluster_id, cpu_id;
mpidr &= MPIDR_AFFINITY_MASK;
if (mpidr & ~(MPIDR_CLUSTER_MASK | MPIDR_CPU_MASK))
return -1;
cluster_id = (mpidr >> MPIDR_AFF1_SHIFT) & MPIDR_AFFLVL_MASK;
cpu_id = (mpidr >> MPIDR_AFF0_SHIFT) & MPIDR_AFFLVL_MASK;
if (cluster_id >= PLATFORM_CLUSTER_COUNT)
return -1;
/*
* Validate cpu_id by checking whether it represents a CPU in
* one of the two clusters present on the platform.
*/
if (cpu_id >= PLATFORM_CORE_COUNT_PER_CLUSTER)
return -1;
return (cpu_id + (cluster_id * 4));
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <console.h>
#include <debug.h>
#include <hi6220.h>
#include <hi6553.h>
#include <hisi_sram_map.h>
#include <mmio.h>
#include <platform.h>
#include <platform_def.h>
#include <string.h>
#define ACPU_FREQ_MAX_NUM 5
#define ACPU_OPP_NUM 7
#define ACPU_VALID_VOLTAGE_MAGIC (0x5A5AC5C5)
#define ACPU_WAIT_TIMEOUT (200)
#define ACPU_WAIT_FOR_WFI_TIMOUT (2000)
#define ACPU_DFS_STATE_CNT (0x10000)
struct acpu_dvfs_sram_stru {
unsigned int magic;
unsigned int support_freq_num;
unsigned int support_freq_max;
unsigned int start_prof;
unsigned int vol[ACPU_OPP_NUM];
};
struct acpu_volt_cal_para {
unsigned int freq;
unsigned int ul_vol;
unsigned int dl_vol;
unsigned int core_ref_hpm;
};
struct ddr_volt_cal_para {
unsigned int freq;
unsigned int ul_vol;
unsigned int dl_vol;
unsigned int ddr_ref_hpm;
};
struct acpu_dvfs_opp_para {
unsigned int freq;
unsigned int acpu_clk_profile0;
unsigned int acpu_clk_profile1;
unsigned int acpu_vol_profile;
unsigned int acpu_pll_freq;
unsigned int acpu_pll_frac;
};
unsigned int efuse_acpu_freq[] = {
1200000, 1250000, 1300000, 1350000,
1400000, 1450000, 1500000, 1550000,
1600000, 1650000, 1700000, 1750000,
1800000, 1850000, 1900000, 1950000,
};
struct acpu_dvfs_opp_para hi6220_acpu_profile[] = {
{ 208000, 0x61E5, 0x022, 0x3A, 0x5220102B, 0x05555555 },
{ 432000, 0x10A6, 0x121, 0x3A, 0x5120102D, 0x10000005 },
{ 729000, 0x2283, 0x100, 0x4A, 0x51101026, 0x10000005 },
{ 960000, 0x1211, 0x100, 0x5B, 0x51101032, 0x10000005 },
{ 1200000, 0x1211, 0x100, 0x6B, 0x5110207D, 0x10000005 },
{ 1400000, 0x1211, 0x100, 0x6B, 0x51101049, 0x10000005 },
{ 1500000, 0x1211, 0x100, 0x6B, 0x51101049, 0x10000005 },
};
struct acpu_dvfs_opp_para *acpu_dvfs_profile = hi6220_acpu_profile;
struct acpu_dvfs_sram_stru *acpu_dvfs_sram_buf =
(struct acpu_dvfs_sram_stru *)MEMORY_AXI_ACPU_FREQ_VOL_ADDR;
static inline void write_reg_mask(uintptr_t addr,
uint32_t val, uint32_t mask)
{
uint32_t reg;
reg = mmio_read_32(addr);
reg = (reg & ~(mask)) | val;
mmio_write_32(addr, reg);
}
static inline uint32_t read_reg_mask(uintptr_t addr,
uint32_t mask, uint32_t offset)
{
uint32_t reg;
reg = mmio_read_32(addr);
reg &= (mask << offset);
return (reg >> offset);
}
static int acpu_dvfs_syspll_cfg(unsigned int prof_id)
{
uint32_t reg0 = 0;
uint32_t count = 0;
uint32_t clk_div_status = 0;
/*
* step 1:
* - ACPUSYSPLLCFG.acpu_subsys_clk_div_sw = 0x3;
* - ACPUSYSPLLCFG.acpu_syspll_clken_cfg = 0x1;
*/
write_reg_mask(PMCTRL_ACPUSYSPLLCFG, 0x3 << 12, 0x3 << 12);
write_reg_mask(PMCTRL_ACPUSYSPLLCFG, 0x1 << 4, 0x1 << 4);
/*
* step 2:
* - ACPUSYSPLLCFG.acpu_syspll_div_cfg:
* 208MHz, set to 0x5;
* 500MHz, set to 0x2;
* other opps set to 0x1
*/
if (prof_id == 0)
write_reg_mask(PMCTRL_ACPUSYSPLLCFG, 0x5 << 0, 0x7 << 0);
else if (prof_id == 1)
write_reg_mask(PMCTRL_ACPUSYSPLLCFG, 0x2 << 0, 0x7 << 0);
else
write_reg_mask(PMCTRL_ACPUSYSPLLCFG, 0x1 << 0, 0x7 << 0);
/*
* step 3:
* - Polling ACPU_SC_CPU_STAT.clk_div_status_vd == 0x3;
* - ACPU_SC_VD_CTRL.tune_en_dif = 0
* - ACPU_SC_VD_CTRL.tune_en_int = 0
* - PMCTRL_ACPUCLKDIV.acpu_ddr_clk_div_cfg = 0x1
* - PMCTRL_ACPUPLLSEL.acpu_pllsw_cfg = 0x1
*/
clk_div_status = 0x3;
do {
reg0 = read_reg_mask(ACPU_SC_CPU_STAT, 0x3, 20);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: clk div status timeout!\n", __func__);
return -1;
}
} while (clk_div_status != reg0);
write_reg_mask(ACPU_SC_VD_CTRL, 0x0, (0x1 << 0) | (0x1 << 11));
write_reg_mask(PMCTRL_ACPUCLKDIV, 0x1 << 8, 0x3 << 8);
write_reg_mask(PMCTRL_ACPUPLLSEL, 0x1 << 0, 0x1 << 0);
return 0;
}
static void acpu_dvfs_clk_div_cfg(unsigned int prof_id,
unsigned int *cpuext_cfg,
unsigned int *acpu_ddr_cfg)
{
if (prof_id == 0) {
write_reg_mask(PMCTRL_ACPUCLKDIV,
(0x1 << SOC_PMCTRL_ACPUCLKDIV_cpuext_clk_div_cfg_START) |
(0x1 << SOC_PMCTRL_ACPUCLKDIV_acpu_ddr_clk_div_cfg_START),
(0x3 << SOC_PMCTRL_ACPUCLKDIV_cpuext_clk_div_cfg_START) |
(0x3 << SOC_PMCTRL_ACPUCLKDIV_acpu_ddr_clk_div_cfg_START));
*cpuext_cfg = 0x1;
*acpu_ddr_cfg = 0x1;
} else if (prof_id == 1) {
write_reg_mask(PMCTRL_ACPUCLKDIV,
(0x1 << SOC_PMCTRL_ACPUCLKDIV_cpuext_clk_div_cfg_START) |
(0x1 << SOC_PMCTRL_ACPUCLKDIV_acpu_ddr_clk_div_cfg_START),
(0x3 << SOC_PMCTRL_ACPUCLKDIV_cpuext_clk_div_cfg_START) |
(0x3 << SOC_PMCTRL_ACPUCLKDIV_acpu_ddr_clk_div_cfg_START));
*cpuext_cfg = 0x1;
*acpu_ddr_cfg = 0x1;
} else {
/* ddr has not been inited */
write_reg_mask(PMCTRL_ACPUCLKDIV,
(0x1 << SOC_PMCTRL_ACPUCLKDIV_cpuext_clk_div_cfg_START) |
(0x0 << SOC_PMCTRL_ACPUCLKDIV_acpu_ddr_clk_div_cfg_START),
(0x3 << SOC_PMCTRL_ACPUCLKDIV_cpuext_clk_div_cfg_START) |
(0x3 << SOC_PMCTRL_ACPUCLKDIV_acpu_ddr_clk_div_cfg_START));
*cpuext_cfg = 0x1;
*acpu_ddr_cfg = 0x0;
}
}
static int acpu_dvfs_freq_ascend(unsigned int cur_prof, unsigned int tar_prof)
{
unsigned int reg0 = 0;
unsigned int reg1 = 0;
unsigned int reg2 = 0;
unsigned int count = 0;
unsigned int cpuext_cfg_val = 0;
unsigned int acpu_ddr_cfg_val = 0;
int ret = 0;
/*
* step 1:
* - PMCTRL_ACPUSYSPLLCFG.acpu_subsys_clk_div_sw = 0x3;
* - ACPUSYSPLLCFG.acpu_syspll_clken_cfg = 0x1;
*
* step 2:
* - PMCTRL_ACPUSYSPLLCFG.acpu_syspll_div_cfg = 0x5 (208MHz)
* - PMCTRL_ACPUSYSPLLCFG.acpu_syspll_div_cfg = 0x2 (500MHz)
* - PMCTRL_ACPUSYSPLLCFG.acpu_syspll_div_cfg = 0x1 (Other OPPs)
*
* step 3:
* - ACPU_SC_CPU_STAT.clk_div_status_vd = 0x3;
* - ACPU_SC_VD_CTRL.tune_en_dif = 0x0;
* - ACPU_SC_VD_CTRL.tune_en_int = 0x0;
* - PMCTRL_ACPUCLKDIV.acpu_ddr_clk_div_cfg = 0x1;
* - PMCTRL_ACPUPLLSEL.acpu_pllsw_cfg = 0x1
*/
ret = acpu_dvfs_syspll_cfg(cur_prof);
if (ret)
return -1;
/*
* step 4:
* - Polling PMCTRL_ACPUPLLSEL.syspll_sw_stat == 0x1
*/
count = 0;
do {
reg0 = read_reg_mask(PMCTRL_ACPUPLLSEL, 0x1,
SOC_PMCTRL_ACPUPLLSEL_syspll_sw_stat_START);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: syspll sw status timeout\n", __func__);
return -1;
}
} while (reg0 != 0x1);
/* Enable VD functionality if > 800MHz */
if (acpu_dvfs_profile[tar_prof].freq > 800000) {
write_reg_mask(ACPU_SC_VD_HPM_CTRL,
HPM_OSC_DIV_VAL, HPM_OSC_DIV_MASK);
/*
* step 5:
* - ACPU_SC_VD_HPM_CTRL.hpm_dly_exp = 0xC7A;
* - ACPU_SC_VD_MASK_PATTERN_CTRL[12:0] = 0xCCB;
*/
write_reg_mask(ACPU_SC_VD_HPM_CTRL,
HPM_DLY_EXP_VAL, HPM_DLY_EXP_MASK);
write_reg_mask(ACPU_SC_VD_MASK_PATTERN_CTRL,
ACPU_SC_VD_MASK_PATTERN_VAL,
ACPU_SC_VD_MASK_PATTERN_MASK);
/*
* step 6:
* - ACPU_SC_VD_DLY_TABLE0_CTRL = 0x1FFF;
* - ACPU_SC_VD_DLY_TABLE1_CTRL = 0x1FFFFFF;
* - ACPU_SC_VD_DLY_TABLE2_CTRL = 0x7FFFFFFF;
* - ACPU_SC_VD_DLY_FIXED_CTRL = 0x1;
*/
mmio_write_32(ACPU_SC_VD_DLY_TABLE0_CTRL, 0x1FFF);
mmio_write_32(ACPU_SC_VD_DLY_TABLE1_CTRL, 0x1FFFFFF);
mmio_write_32(ACPU_SC_VD_DLY_TABLE2_CTRL, 0x7FFFFFFF);
mmio_write_32(ACPU_SC_VD_DLY_FIXED_CTRL, 0x1);
/*
* step 7:
* - ACPU_SC_VD_CTRL.shift_table0 = 0x1;
* - ACPU_SC_VD_CTRL.shift_table1 = 0x3;
* - ACPU_SC_VD_CTRL.shift_table2 = 0x5;
* - ACPU_SC_VD_CTRL.shift_table3 = 0x6;
*
* step 8:
* - ACPU_SC_VD_CTRL.tune = 0x7;
*/
write_reg_mask(ACPU_SC_VD_CTRL,
ACPU_SC_VD_SHIFT_TABLE_TUNE_VAL,
ACPU_SC_VD_SHIFT_TABLE_TUNE_MASK);
}
/* step 9: ACPUPLLCTRL.acpupll_en_cfg = 0x0 */
write_reg_mask(PMCTRL_ACPUPLLCTRL, 0x0,
0x1 << SOC_PMCTRL_ACPUPLLCTRL_acpupll_en_cfg_START);
/* step 10: set PMCTRL_ACPUPLLFREQ and PMCTRL_ACPUPLLFRAC */
mmio_write_32(PMCTRL_ACPUPLLFREQ,
acpu_dvfs_profile[tar_prof].acpu_pll_freq);
mmio_write_32(PMCTRL_ACPUPLLFRAC,
acpu_dvfs_profile[tar_prof].acpu_pll_frac);
/*
* step 11:
* - wait for 1us;
* - PMCTRL_ACPUPLLCTRL.acpupll_en_cfg = 0x1
*/
count = 0;
while (count < ACPU_WAIT_TIMEOUT)
count++;
write_reg_mask(PMCTRL_ACPUPLLCTRL,
0x1 << SOC_PMCTRL_ACPUPLLCTRL_acpupll_en_cfg_START,
0x1 << SOC_PMCTRL_ACPUPLLCTRL_acpupll_en_cfg_START);
/* step 12: PMCTRL_ACPUVOLPMUADDR = 0x100da */
mmio_write_32(PMCTRL_ACPUVOLPMUADDR, 0x100da);
/*
* step 13:
* - PMCTRL_ACPUDESTVOL.acpu_dest_vol = 0x13 (208MHz);
* - PMCTRL_ACPUDESTVOL.acpu_dest_vol = 0x13 (500MHz);
* - PMCTRL_ACPUDESTVOL.acpu_dest_vol = 0x20 (798MHz);
* - PMCTRL_ACPUDESTVOL.acpu_dest_vol = 0x3A (1300MHz);
* - PMCTRL_ACPUDESTVOL.acpu_dest_vol = 0x3A (1500MHz);
*/
write_reg_mask(PMCTRL_ACPUDESTVOL,
acpu_dvfs_profile[tar_prof].acpu_vol_profile,
((0x1 << (SOC_PMCTRL_ACPUDESTVOL_acpu_dest_vol_END + 1)) - 1));
/*
* step 14:
* - Polling PMCTRL_ACPUDESTVOL.acpu_vol_using == ACPUDESTVOL.acpu_dest_vol
* - Polling ACPUVOLTIMEOUT.acpu_vol_timeout == 0x1
* - Config PMCTRL_ACPUCLKDIV.acpu_ddr_clk_div_cfg
* - Config ACPUCLKDIV.cpuext_clk_div_cfg;
*/
count = 0;
do {
reg0 = read_reg_mask(PMCTRL_ACPUDESTVOL, 0x7F,
SOC_PMCTRL_ACPUDESTVOL_acpu_dest_vol_START);
reg1 = read_reg_mask(PMCTRL_ACPUDESTVOL, 0x7F,
SOC_PMCTRL_ACPUDESTVOL_acpu_vol_using_START);
reg2 = read_reg_mask(PMCTRL_ACPUVOLTTIMEOUT, 0x1,
SOC_PMCTRL_ACPUVOLTIMEOUT_acpu_vol_timeout_START);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: acpu destvol cfg timeout.\n", __func__);
return -1;
}
} while ((reg0 != reg1) || (reg2 != 0x1));
acpu_dvfs_clk_div_cfg(tar_prof, &cpuext_cfg_val, &acpu_ddr_cfg_val);
/*
* step 15:
* - Polling PMCTRL_ACPUCLKDIV.cpuext_clk_div_stat;
* - Polling ACPUCLKDIV.acpu_ddr_clk_div_stat;
* - ACPUPLLCTRL.acpupll_timeout = 0x1;
* - PMCTRL_ACPUPLLSEL.acpu_pllsw_cfg = 0x0;
*/
count = 0;
do {
reg0 = read_reg_mask(PMCTRL_ACPUCLKDIV, 0x3,
SOC_PMCTRL_ACPUCLKDIV_acpu_ddr_clk_div_stat_START);
reg1 = read_reg_mask(PMCTRL_ACPUCLKDIV, 0x3,
SOC_PMCTRL_ACPUCLKDIV_cpuext_clk_div_stat_START);
reg2 = read_reg_mask(PMCTRL_ACPUPLLCTRL, 0x1,
SOC_PMCTRL_ACPUPLLCTRL_acpupll_timeout_START);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: acpu clk div cfg timeout.\n", __func__);
return -1;
}
} while ((reg1 != cpuext_cfg_val) ||
(reg0 != acpu_ddr_cfg_val) ||
(reg2 != 0x1));
write_reg_mask(PMCTRL_ACPUPLLSEL, 0x0,
0x1 << SOC_PMCTRL_ACPUPLLSEL_acpu_pllsw_cfg_START);
/*
* step 16:
* - Polling PMCTRL_ACPUPLLSEL.acpupll_sw_stat == 0x1;
* - ACPU_SC_VD_CTRL.force_clk_en = 0x0;
* - ACPU_SC_VD_CTRL.clk_dis_cnt_en = 0x0;
* - ACPU_SC_VD_CTRL.calibrate_en_ini = 0x0;
* - ACPU_SC_VD_CTRL.calibrate_en_dif = 0x0;
* - ACPU_SC_VD_CTRL.div_en_dif = 0x1;
* - ACPU_SC_VD_CTRL.tune_en_int = 0x1;
* - ACPU_SC_VD_CTRL.tune_en_dif = 0x1;
* - PMCTRL_ACPUSYSPLLCFG.acpu_subsys_clk_div_sw = 0x0;
* - ACPUSYSPLLCFG.acpu_syspll_clken_cfg = 0x0;
*/
count = 0;
do {
reg0 = read_reg_mask(PMCTRL_ACPUPLLSEL, 0x1,
SOC_PMCTRL_ACPUPLLSEL_acpu_pllsw_stat_START);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: acpu pll sw status timeout.\n", __func__);
return -1;
}
} while (reg0 != 0x1);
if (acpu_dvfs_profile[tar_prof].freq > 800000)
write_reg_mask(ACPU_SC_VD_CTRL,
ACPU_SC_VD_EN_ASIC_VAL, ACPU_SC_VD_EN_MASK);
write_reg_mask(PMCTRL_ACPUSYSPLLCFG, 0x0,
(0x3 << SOC_PMCTRL_ACPUSYSPLLCFG_acpu_subsys_clk_div_sw_START) |
(0x1 << SOC_PMCTRL_ACPUSYSPLLCFG_acpu_syspll_clken_cfg_START));
return 0;
}
static int acpu_dvfs_freq_descend(unsigned int cur_prof, unsigned int tar_prof)
{
unsigned int reg0 = 0;
unsigned int reg1 = 0;
unsigned int reg2 = 0;
unsigned int count = 0;
unsigned int cpuext_cfg_val = 0;
unsigned int acpu_ddr_cfg_val = 0;
int ret = 0;
ret = acpu_dvfs_syspll_cfg(tar_prof);
if (ret)
return -1;
/*
* step 4:
* - Polling PMCTRL_ACPUPLLSEL.syspll_sw_stat == 0x1
*/
count = 0;
do {
reg0 = read_reg_mask(PMCTRL_ACPUPLLSEL, 0x1, 2);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: syspll sw status timeout.\n", __func__);
return -1;
}
} while (reg0 != 0x1);
/*
* Step 5:
* - PMCTRL_ACPUPLLCTRL.acpupll_en_cfg = 0x0
*/
write_reg_mask(PMCTRL_ACPUPLLCTRL, 0x0, 0x1 << 0);
/*
* step 6
* - Config PMCTRL_ACPUPLLFREQ and ACPUPLLFRAC
*/
mmio_write_32(PMCTRL_ACPUPLLFREQ, acpu_dvfs_profile[tar_prof].acpu_pll_freq);
mmio_write_32(PMCTRL_ACPUPLLFRAC, acpu_dvfs_profile[tar_prof].acpu_pll_frac);
/*
* step 7:
* - Wait 1us;
* - Config PMCTRL_ACPUPLLCTRL.acpupll_en_cfg = 0x1
*/
count = 0;
while (count < ACPU_WAIT_TIMEOUT)
count++;
write_reg_mask(PMCTRL_ACPUPLLCTRL,
0x1 << SOC_PMCTRL_ACPUPLLCTRL_acpupll_en_cfg_START,
0x1 << SOC_PMCTRL_ACPUPLLCTRL_acpupll_en_cfg_START);
/* Enable VD functionality if > 800MHz */
if (acpu_dvfs_profile[tar_prof].freq > 800000) {
write_reg_mask(ACPU_SC_VD_HPM_CTRL,
HPM_OSC_DIV_VAL, HPM_OSC_DIV_MASK);
/*
* step 9:
* - ACPU_SC_VD_HPM_CTRL.hpm_dly_exp = 0xC7A;
* - ACPU_SC_VD_MASK_PATTERN_CTRL[12:0] = 0xCCB;
*/
write_reg_mask(ACPU_SC_VD_HPM_CTRL,
HPM_DLY_EXP_VAL, HPM_DLY_EXP_MASK);
write_reg_mask(ACPU_SC_VD_MASK_PATTERN_CTRL,
ACPU_SC_VD_MASK_PATTERN_VAL,
ACPU_SC_VD_MASK_PATTERN_MASK);
/*
* step 10:
* - ACPU_SC_VD_DLY_TABLE0_CTRL = 0x1FFF;
* - ACPU_SC_VD_DLY_TABLE1_CTRL = 0x1FFFFFF;
* - ACPU_SC_VD_DLY_TABLE2_CTRL = 0x7FFFFFFF;
* - ACPU_SC_VD_DLY_FIXED_CTRL = 0x1;
*/
mmio_write_32(ACPU_SC_VD_DLY_TABLE0_CTRL, 0x1FFF);
mmio_write_32(ACPU_SC_VD_DLY_TABLE1_CTRL, 0x1FFFFFF);
mmio_write_32(ACPU_SC_VD_DLY_TABLE2_CTRL, 0x7FFFFFFF);
mmio_write_32(ACPU_SC_VD_DLY_FIXED_CTRL, 0x1);
/*
* step 11:
* - ACPU_SC_VD_CTRL.shift_table0 = 0x1;
* - ACPU_SC_VD_CTRL.shift_table1 = 0x3;
* - ACPU_SC_VD_CTRL.shift_table2 = 0x5;
* - ACPU_SC_VD_CTRL.shift_table3 = 0x6;
*
* step 12:
* - ACPU_SC_VD_CTRL.tune = 0x7;
*/
write_reg_mask(ACPU_SC_VD_CTRL,
ACPU_SC_VD_SHIFT_TABLE_TUNE_VAL,
ACPU_SC_VD_SHIFT_TABLE_TUNE_MASK);
}
/*
* step 13:
* - Pollig PMCTRL_ACPUPLLCTRL.acpupll_timeout == 0x1;
* - PMCTRL_ACPUPLLSEL.acpu_pllsw_cfg = 0x0;
*/
count = 0;
do {
reg0 = read_reg_mask(PMCTRL_ACPUPLLCTRL, 0x1,
SOC_PMCTRL_ACPUPLLCTRL_acpupll_timeout_START);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: acpupll timeout.\n", __func__);
return -1;
}
} while (reg0 != 0x1);
write_reg_mask(PMCTRL_ACPUPLLSEL, 0x0,
0x1 << SOC_PMCTRL_ACPUPLLSEL_acpu_pllsw_cfg_START);
/*
* step 14:
* - Polling PMCTRL_ACPUPLLSEL.acpupll_sw_stat == 0x1;
* - ACPU_SC_VD_CTRL.force_clk_en = 0x0;
* - ACPU_SC_VD_CTRL.clk_dis_cnt_en = 0x0;
* - ACPU_SC_VD_CTRL.calibrate_en_ini = 0x0;
* - ACPU_SC_VD_CTRL.calibrate_en_dif = 0x0;
* - ACPU_SC_VD_CTRL.div_en_dif = 0x1;
* - ACPU_SC_VD_CTRL.tune_en_int = 0x1;
* - ACPU_SC_VD_CTRL.tune_en_dif = 0x1;
*/
count = 0;
do {
reg0 = read_reg_mask(PMCTRL_ACPUPLLSEL, 0x1,
SOC_PMCTRL_ACPUPLLSEL_acpu_pllsw_stat_START);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: acpupll sw status timeout.\n", __func__);
return -1;
}
} while (reg0 != 0x1);
if (acpu_dvfs_profile[tar_prof].freq > 800000)
write_reg_mask(ACPU_SC_VD_CTRL,
ACPU_SC_VD_EN_ASIC_VAL, ACPU_SC_VD_EN_MASK);
/*
* step 15:
* - PMCTRL_ACPUSYSPLLCFG.acpu_subsys_clk_div_sw = 0x0;
* - ACPUSYSPLLCFG.acpu_syspll_clken_cfg = 0x0;
*/
write_reg_mask(PMCTRL_ACPUSYSPLLCFG, 0x0,
(0x3 << SOC_PMCTRL_ACPUSYSPLLCFG_acpu_subsys_clk_div_sw_START) |
(0x1 << SOC_PMCTRL_ACPUSYSPLLCFG_acpu_syspll_clken_cfg_START));
/*
* step 16:
* - Polling ACPU_SC_CPU_STAT.clk_div_status_vd == 0x0;
*/
count = 0;
do {
reg0 = read_reg_mask(ACPU_SC_CPU_STAT, 0x3,
ACPU_SC_CPU_STAT_CLK_DIV_STATUS_VD_SHIFT);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: clk div status timeout.\n", __func__);
return -1;
}
} while (reg0 != 0x0);
acpu_dvfs_clk_div_cfg(tar_prof, &cpuext_cfg_val, &acpu_ddr_cfg_val);
/*
* step 17:
* - Polling PMCTRL_ACPUCLKDIV.cpuext_clk_div_stat;
* - Polling ACPUCLKDIV.acpu_ddr_clk_div_stat;
* - PMCTRL_ACPUVOLPMUADDR = 0x1006C;
*/
count = 0;
do {
reg0 = read_reg_mask(PMCTRL_ACPUCLKDIV, 0x3,
SOC_PMCTRL_ACPUCLKDIV_cpuext_clk_div_stat_START);
reg1 = read_reg_mask(PMCTRL_ACPUCLKDIV, 0x3,
SOC_PMCTRL_ACPUCLKDIV_acpu_ddr_clk_div_stat_START);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: acpu clk div cfg timeout.\n", __func__);
return -1;
}
} while ((reg0 != cpuext_cfg_val) || (reg1 != acpu_ddr_cfg_val));
mmio_write_32(PMCTRL_ACPUVOLPMUADDR, 0x100da);
/*
* step 16:
* - Polling PMCTRL_ACPUPLLSEL.acpupll_sw_stat == 0x1;
* - ACPU_SC_VD_CTRL.force_clk_en = 0x0;
* - ACPU_SC_VD_CTRL.clk_dis_cnt_en = 0x0;
* - ACPU_SC_VD_CTRL.calibrate_en_ini = 0x0;
* - ACPU_SC_VD_CTRL.calibrate_en_dif = 0x0;
* - ACPU_SC_VD_CTRL.div_en_dif = 0x1;
* - ACPU_SC_VD_CTRL.tune_en_int = 0x1;
* - ACPU_SC_VD_CTRL.tune_en_dif = 0x1;
* - PMCTRL_ACPUSYSPLLCFG.acpu_subsys_clk_div_sw = 0x0;
* - ACPUSYSPLLCFG.acpu_syspll_clken_cfg = 0x0;
*/
write_reg_mask(PMCTRL_ACPUDESTVOL,
acpu_dvfs_profile[tar_prof].acpu_vol_profile,
((0x1 << (SOC_PMCTRL_ACPUDESTVOL_acpu_dest_vol_END + 1)) - 1));
/*
* step 19:
* - Polling PMCTRL_ACPUDESTVOL.acpu_vol_using == ACPUDESTVOL.acpu_dest_vol
* - ACPUVOLTIMEOUT.acpu_vol_timeout = 0x1;
*/
count = 0;
do {
reg0 = read_reg_mask(PMCTRL_ACPUDESTVOL, 0x7F,
SOC_PMCTRL_ACPUDESTVOL_acpu_dest_vol_START);
reg1 = read_reg_mask(PMCTRL_ACPUDESTVOL, 0x7F,
SOC_PMCTRL_ACPUDESTVOL_acpu_vol_using_START);
reg2 = read_reg_mask(PMCTRL_ACPUVOLTTIMEOUT, 0x1,
SOC_PMCTRL_ACPUVOLTIMEOUT_acpu_vol_timeout_START);
if ((count++) > ACPU_DFS_STATE_CNT) {
ERROR("%s: acpu destvol cfg timeout.\n", __func__);
return -1;
}
} while ((reg0 != reg1) || (reg2 != 0x1));
return 0;
}
int acpu_dvfs_target(unsigned int curr_prof, unsigned int target_prof)
{
int ret = 0;
if (curr_prof == target_prof) {
INFO("%s: target_prof is equal curr_prof: is %d!\n",
__func__, curr_prof);
return 0;
}
if ((curr_prof >= ACPU_FREQ_MAX_NUM) ||
(target_prof >= ACPU_FREQ_MAX_NUM)) {
INFO("%s: invalid parameter %d %d\n",
__func__, curr_prof, target_prof);
return -1;
}
if (target_prof > acpu_dvfs_sram_buf->support_freq_num)
target_prof = acpu_dvfs_sram_buf->support_freq_num;
if (target_prof < curr_prof)
ret = acpu_dvfs_freq_descend(curr_prof, target_prof);
else if (target_prof > curr_prof)
ret = acpu_dvfs_freq_ascend(curr_prof, target_prof);
if (ret) {
ERROR("%s: acpu_dvfs_target failed!\n", __func__);
return -1;
}
/* Complete acpu dvfs setting and set magic number */
acpu_dvfs_sram_buf->start_prof = target_prof;
acpu_dvfs_sram_buf->magic = ACPU_VALID_VOLTAGE_MAGIC;
mmio_write_32(DDR_DFS_FREQ_ADDR, 800000);
return 0;
}
static int acpu_dvfs_set_freq(void)
{
unsigned int i;
unsigned int curr_prof;
unsigned int target_prof;
unsigned int max_freq = 0;
max_freq = acpu_dvfs_sram_buf->support_freq_max;
for (i = 0; i < acpu_dvfs_sram_buf->support_freq_num; i++) {
if (max_freq == hi6220_acpu_profile[i].freq) {
target_prof = i;
break;
}
}
if (i == acpu_dvfs_sram_buf->support_freq_num) {
ERROR("%s: cannot found max freq profile\n", __func__);
return -1;
}
curr_prof = 0;
target_prof = i;
/* if max freq is 208MHz, do nothing */
if (curr_prof == target_prof)
return 0;
if (acpu_dvfs_target(curr_prof, target_prof)) {
ERROR("%s: set acpu freq failed!", __func__);
return -1;
}
INFO("%s: support freq num is %d\n",
__func__, acpu_dvfs_sram_buf->support_freq_num);
INFO("%s: start prof is 0x%x\n",
__func__, acpu_dvfs_sram_buf->start_prof);
INFO("%s: magic is 0x%x\n",
__func__, acpu_dvfs_sram_buf->magic);
INFO("%s: voltage:\n", __func__);
for (i = 0; i < acpu_dvfs_sram_buf->support_freq_num; i++)
INFO(" - %d: 0x%x\n", i, acpu_dvfs_sram_buf->vol[i]);
NOTICE("%s: set acpu freq success!", __func__);
return 0;
}
struct acpu_dvfs_volt_setting {
unsigned int magic;
unsigned int support_freq_num;
unsigned int support_freq_max;
unsigned int start_prof;
unsigned int vol[7];
unsigned int hmp_dly_threshold[7];
};
static void acpu_dvfs_volt_init(void)
{
struct acpu_dvfs_volt_setting *volt;
/*
* - set default voltage;
* - set pmu address;
* - set voltage up and down step;
* - set voltage stable time;
*/
mmio_write_32(PMCTRL_ACPUDFTVOL, 0x4a);
mmio_write_32(PMCTRL_ACPUVOLPMUADDR, 0xda);
mmio_write_32(PMCTRL_ACPUVOLUPSTEP, 0x1);
mmio_write_32(PMCTRL_ACPUVOLDNSTEP, 0x1);
mmio_write_32(PMCTRL_ACPUPMUVOLUPTIME, 0x60);
mmio_write_32(PMCTRL_ACPUPMUVOLDNTIME, 0x60);
mmio_write_32(PMCTRL_ACPUCLKOFFCFG, 0x1000);
volt = (void *)MEMORY_AXI_ACPU_FREQ_VOL_ADDR;
volt->magic = 0x5a5ac5c5;
volt->support_freq_num = 5;
volt->support_freq_max = 1200000;
volt->start_prof = 4;
volt->vol[0] = 0x49;
volt->vol[1] = 0x49;
volt->vol[2] = 0x50;
volt->vol[3] = 0x60;
volt->vol[4] = 0x78;
volt->vol[5] = 0x78;
volt->vol[6] = 0x78;
volt->hmp_dly_threshold[0] = 0x0;
volt->hmp_dly_threshold[1] = 0x0;
volt->hmp_dly_threshold[2] = 0x0;
volt->hmp_dly_threshold[3] = 0x0e8b0e45;
volt->hmp_dly_threshold[4] = 0x10691023;
volt->hmp_dly_threshold[5] = 0x10691023;
volt->hmp_dly_threshold[6] = 0x10691023;
INFO("%s: success!\n", __func__);
}
void init_acpu_dvfs(void)
{
unsigned int i = 0;
INFO("%s: pmic version %d\n", __func__,
mmio_read_8(HI6553_VERSION_REG));
/* init parameters */
mmio_write_32(ACPU_CHIP_MAX_FREQ, efuse_acpu_freq[8]);
INFO("%s: ACPU_CHIP_MAX_FREQ=0x%x.\n",
__func__, mmio_read_32(ACPU_CHIP_MAX_FREQ));
/* set maximum support frequency to 1.2GHz */
for (i = 0; i < ACPU_FREQ_MAX_NUM; i++)
acpu_dvfs_sram_buf->vol[i] = hi6220_acpu_profile[i].acpu_vol_profile;
acpu_dvfs_sram_buf->support_freq_num = ACPU_FREQ_MAX_NUM;
acpu_dvfs_sram_buf->support_freq_max = 1200000;
/* init acpu dvfs */
acpu_dvfs_volt_init();
acpu_dvfs_set_freq();
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <hisi_ipc.h>
#include <hisi_sram_map.h>
#include <mmio.h>
#include <platform_def.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
static int ipc_init;
static unsigned int cpu_ipc_num[PLATFORM_CLUSTER_COUNT][PLATFORM_CORE_COUNT_PER_CLUSTER] = {
{
HISI_IPC_MCU_INT_SRC_ACPU0_PD,
HISI_IPC_MCU_INT_SRC_ACPU1_PD,
HISI_IPC_MCU_INT_SRC_ACPU2_PD,
HISI_IPC_MCU_INT_SRC_ACPU3_PD,
},
{
HISI_IPC_MCU_INT_SRC_ACPU4_PD,
HISI_IPC_MCU_INT_SRC_ACPU5_PD,
HISI_IPC_MCU_INT_SRC_ACPU6_PD,
HISI_IPC_MCU_INT_SRC_ACPU7_PD,
}
};
int hisi_cpus_pd_in_cluster_besides_curr(unsigned int cpu,
unsigned int cluster)
{
unsigned int val = 0, cpu_val = 0;
int i;
val = mmio_read_32(ACPU_CORE_POWERDOWN_FLAGS_ADDR);
val = val >> (cluster * 16);
for (i = 0; i < PLATFORM_CORE_COUNT_PER_CLUSTER; i++) {
if (cpu == i)
continue;
cpu_val = (val >> (i * 4)) & 0xF;
if (cpu_val == 0x8)
return 0;
}
return 1;
}
int hisi_cpus_powered_off_besides_curr(unsigned int cpu)
{
unsigned int val;
val = mmio_read_32(ACPU_CORE_POWERDOWN_FLAGS_ADDR);
return (val == (0x8 << (cpu * 4)));
}
static void hisi_ipc_send(unsigned int ipc_num)
{
if (!ipc_init) {
printf("error ipc base is null!!!\n");
return;
}
mmio_write_32(HISI_IPC_CPU_RAW_INT_ADDR, 1 << ipc_num);
}
void hisi_ipc_spin_lock(unsigned int signal)
{
unsigned int hs_ctrl;
if (signal >= HISI_IPC_INT_SRC_NUM)
return;
do {
hs_ctrl = mmio_read_32(HISI_IPC_ACPU_CTRL(signal));
} while (hs_ctrl);
}
void hisi_ipc_spin_unlock(unsigned int signal)
{
if (signal >= HISI_IPC_INT_SRC_NUM)
return;
mmio_write_32(HISI_IPC_ACPU_CTRL(signal), 0);
}
void hisi_ipc_cpu_on_off(unsigned int cpu, unsigned int cluster,
unsigned int mode)
{
unsigned int val = 0;
unsigned int offset;
if (mode == HISI_IPC_PM_ON)
offset = cluster * 16 + cpu * 4;
else
offset = cluster * 16 + cpu * 4 + 1;
hisi_ipc_spin_lock(HISI_IPC_SEM_CPUIDLE);
val = mmio_read_32(ACPU_CORE_POWERDOWN_FLAGS_ADDR);
val |= (0x01 << offset);
mmio_write_32(ACPU_CORE_POWERDOWN_FLAGS_ADDR, val);
isb();
dsb();
hisi_ipc_spin_unlock(HISI_IPC_SEM_CPUIDLE);
hisi_ipc_send(cpu_ipc_num[cluster][cpu]);
}
void hisi_ipc_cpu_on(unsigned int cpu, unsigned int cluster)
{
hisi_ipc_cpu_on_off(cpu, cluster, HISI_IPC_PM_ON);
}
void hisi_ipc_cpu_off(unsigned int cpu, unsigned int cluster)
{
hisi_ipc_cpu_on_off(cpu, cluster, HISI_IPC_PM_OFF);
}
void hisi_ipc_cluster_on_off(unsigned int cpu, unsigned int cluster,
unsigned int mode)
{
unsigned int val = 0;
unsigned int offset;
if (mode == HISI_IPC_PM_ON)
offset = cluster * 4;
else
offset = cluster * 4 + 1;
hisi_ipc_spin_lock(HISI_IPC_SEM_CPUIDLE);
val = mmio_read_32(ACPU_CLUSTER_POWERDOWN_FLAGS_ADDR);
val |= (0x01 << offset);
mmio_write_32(ACPU_CLUSTER_POWERDOWN_FLAGS_ADDR, val);
isb();
dsb();
hisi_ipc_spin_unlock(HISI_IPC_SEM_CPUIDLE);
hisi_ipc_send(cpu_ipc_num[cluster][cpu]);
}
void hisi_ipc_cluster_on(unsigned int cpu, unsigned int cluster)
{
hisi_ipc_cluster_on_off(cpu, cluster, HISI_IPC_PM_ON);
}
void hisi_ipc_cluster_off(unsigned int cpu, unsigned int cluster)
{
hisi_ipc_cluster_on_off(cpu, cluster, HISI_IPC_PM_OFF);
}
void hisi_ipc_cpu_suspend(unsigned int cpu, unsigned int cluster)
{
unsigned int val = 0;
unsigned int offset;
offset = cluster * 16 + cpu * 4 + 2;
hisi_ipc_spin_lock(HISI_IPC_SEM_CPUIDLE);
val = mmio_read_32(ACPU_CORE_POWERDOWN_FLAGS_ADDR);
val |= (0x01 << offset);
mmio_write_32(ACPU_CORE_POWERDOWN_FLAGS_ADDR, val);
hisi_ipc_spin_unlock(HISI_IPC_SEM_CPUIDLE);
hisi_ipc_send(cpu_ipc_num[cluster][cpu]);
}
void hisi_ipc_cluster_suspend(unsigned int cpu, unsigned int cluster)
{
unsigned int val;
unsigned int offset;
offset = cluster * 4 + 1;
hisi_ipc_spin_lock(HISI_IPC_SEM_CPUIDLE);
if (hisi_cpus_pd_in_cluster_besides_curr(cpu, cluster)) {
val = mmio_read_32(ACPU_CLUSTER_POWERDOWN_FLAGS_ADDR);
val |= (0x01 << offset);
mmio_write_32(ACPU_CLUSTER_POWERDOWN_FLAGS_ADDR, val);
}
hisi_ipc_spin_unlock(HISI_IPC_SEM_CPUIDLE);
hisi_ipc_send(cpu_ipc_num[cluster][cpu]);
}
void hisi_ipc_psci_system_off(void)
{
hisi_ipc_send(HISI_IPC_MCU_INT_SRC_ACPU_PD);
}
int hisi_ipc_init(void)
{
ipc_init = 1;
mmio_write_32(ACPU_CORE_POWERDOWN_FLAGS_ADDR, 0x8);
mmio_write_32(ACPU_CLUSTER_POWERDOWN_FLAGS_ADDR, 0x8);
return 0;
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <console.h>
#include <debug.h>
#include <hi6220.h>
#include <mmio.h>
#include <platform.h>
#include <platform_def.h>
#include <string.h>
#define MCU_SECTION_MAX 30
enum MCU_IMAGE_SEC_TYPE_ENUM {
MCU_IMAGE_SEC_TYPE_TEXT = 0, /* text section */
MCU_IMAGE_SEC_TYPE_DATA, /* data section */
MCU_IMAGE_SEC_TYPE_BUTT
};
enum MCU_IMAGE_SEC_LOAD_ENUM {
MCU_IMAGE_SEC_LOAD_STATIC = 0,
MCU_IMAGE_SEC_LOAD_DYNAMIC,
MCU_IMAGE_SEC_LOAD_BUFFER,
MCU_IMAGE_SEC_LOAD_MODEM_ENTRY,
MCU_IMAGE_SEC_LOAD_BUTT
};
struct mcu_image_sec {
unsigned short serial;
char type;
char load_attr;
uint32_t src_offset; /* offset in image */
uint32_t dst_offset; /* offset in memory */
uint32_t size;
};
struct mcu_image_head {
char time_stamp[24];
uint32_t image_size;
uint32_t secs_num;
struct mcu_image_sec secs[MCU_SECTION_MAX];
};
#define SOC_SRAM_M3_BASE_ADDR (0xF6000000)
#define MCU_SRAM_SIZE (0x0000C000)
#define MCU_CACHE_SIZE (0x00004000)
#define MCU_CODE_SIZE (MCU_SRAM_SIZE - MCU_CACHE_SIZE)
#define MCU_SYS_MEM_ADDR (0x05E00000)
#define MCU_SYS_MEM_SIZE (0x00100000)
static uint32_t mcu2ap_addr(uint32_t mcu_addr)
{
if (mcu_addr < MCU_CODE_SIZE)
return (mcu_addr + SOC_SRAM_M3_BASE_ADDR);
else if ((mcu_addr >= MCU_SRAM_SIZE) &&
(mcu_addr < MCU_SRAM_SIZE + MCU_SYS_MEM_SIZE))
return mcu_addr - MCU_SRAM_SIZE + MCU_SYS_MEM_ADDR;
else
return mcu_addr;
}
static int is_binary_header_invalid(struct mcu_image_head *head,
unsigned int length)
{
/* invalid cases */
if ((head->image_size == 0) ||
(head->image_size > length) ||
(head->secs_num > MCU_SECTION_MAX) ||
(head->secs_num == 0))
return 1;
return 0;
}
static int is_binary_section_invalid(struct mcu_image_sec *sec,
struct mcu_image_head *head)
{
unsigned long ap_dst_offset = 0;
if ((sec->serial >= head->secs_num) ||
(sec->src_offset + sec->size > head->image_size))
return 1;
if ((sec->type >= MCU_IMAGE_SEC_TYPE_BUTT) ||
(sec->load_attr >= MCU_IMAGE_SEC_LOAD_BUTT))
return 1;
ap_dst_offset = mcu2ap_addr(sec->dst_offset);
if ((ap_dst_offset >= SOC_SRAM_M3_BASE_ADDR) &&
(ap_dst_offset < SOC_SRAM_M3_BASE_ADDR + 0x20000 - sec->size))
return 0;
else if ((ap_dst_offset >= MCU_SYS_MEM_ADDR) &&
(ap_dst_offset < MCU_SYS_MEM_ADDR + MCU_SYS_MEM_SIZE - sec->size))
return 0;
else if ((ap_dst_offset >= 0xfff8e000) &&
(ap_dst_offset < 0xfff91c00 - sec->size))
return 0;
ERROR("%s: mcu destination address invalid.\n", __func__);
ERROR("%s: number=%d, dst offset=%d size=%d\n",
__func__, sec->serial, sec->dst_offset, sec->size);
return 1;
}
void hisi_mcu_enable_sram(void)
{
mmio_write_32(AO_SC_PERIPH_CLKEN4,
AO_SC_PERIPH_CLKEN4_HCLK_IPC_S |
AO_SC_PERIPH_CLKEN4_HCLK_IPC_NS);
/* set register to enable dvfs which is used by mcu */
mmio_write_32(PERI_SC_RESERVED8_ADDR, 0x0A001022);
/* mcu mem is powered on, need de-assert reset */
mmio_write_32(AO_SC_PERIPH_RSTDIS4,
AO_SC_PERIPH_RSTDIS4_RESET_MCU_ECTR_N);
/* enable mcu hclk */
mmio_write_32(AO_SC_PERIPH_CLKEN4,
AO_SC_PERIPH_CLKEN4_HCLK_MCU |
AO_SC_PERIPH_CLKEN4_CLK_MCU_DAP);
}
void hisi_mcu_start_run(void)
{
unsigned int val;
/* set mcu ddr remap configuration */
mmio_write_32(AO_SC_MCU_SUBSYS_CTRL2, MCU_SYS_MEM_ADDR);
/* de-assert reset for mcu and to run */
mmio_write_32(AO_SC_PERIPH_RSTDIS4,
AO_SC_PERIPH_RSTDIS4_RESET_MCU_ECTR_N |
AO_SC_PERIPH_RSTDIS4_RESET_MCU_SYS_N |
AO_SC_PERIPH_RSTDIS4_RESET_MCU_POR_N |
AO_SC_PERIPH_RSTDIS4_RESET_MCU_DAP_N);
val = mmio_read_32(AO_SC_SYS_CTRL2);
mmio_write_32(AO_SC_SYS_CTRL2,
val | AO_SC_SYS_CTRL2_GLB_SRST_STAT_CLEAR);
INFO("%s: AO_SC_SYS_CTRL2=%x\n", __func__,
mmio_read_32(AO_SC_SYS_CTRL2));
}
int hisi_mcu_load_image(uintptr_t image_base, uint32_t image_size)
{
unsigned int i;
struct mcu_image_head *head;
char *buf;
head = (struct mcu_image_head *)image_base;
if (is_binary_header_invalid(head, image_size)) {
ERROR("Invalid %s image header.\n", head->time_stamp);
return -1;
}
buf = (char *)head;
for (i = 0; i < head->secs_num; i++) {
int *src, *dst;
/* check the sections */
if (is_binary_section_invalid(&head->secs[i], head)) {
ERROR("Invalid mcu section.\n");
return -1;
}
/* check if the section is static-loaded */
if (head->secs[i].load_attr != MCU_IMAGE_SEC_LOAD_STATIC)
continue;
/* copy the sections */
src = (int *)(intptr_t)(buf + head->secs[i].src_offset);
dst = (int *)(intptr_t)mcu2ap_addr(head->secs[i].dst_offset);
memcpy((void *)dst, (void *)src, head->secs[i].size);
INFO("%s: mcu sections %d:\n", __func__, i);
INFO("%s: src = 0x%x\n",
__func__, (unsigned int)(uintptr_t)src);
INFO("%s: dst = 0x%x\n",
__func__, (unsigned int)(uintptr_t)dst);
INFO("%s: size = %d\n", __func__, head->secs[i].size);
INFO("%s: [SRC 0x%x] 0x%x 0x%x 0x%x 0x%x\n",
__func__, (unsigned int)(uintptr_t)src,
src[0], src[1], src[2], src[3]);
INFO("%s: [DST 0x%x] 0x%x 0x%x 0x%x 0x%x\n",
__func__, (unsigned int)(uintptr_t)dst,
dst[0], dst[1], dst[2], dst[3]);
}
return 0;
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <debug.h>
#include <mmio.h>
#include <hisi_ipc.h>
#include <hisi_pwrc.h>
#include <hisi_sram_map.h>
#include <hi6220_regs_acpu.h>
#include <hi6220_regs_ao.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <platform_def.h>
#define CLUSTER_CORE_COUNT (4)
#define CLUSTER_CORE_MASK ((1 << CLUSTER_CORE_COUNT) - 1)
void hisi_pwrc_set_core_bx_addr(unsigned int core, unsigned int cluster,
uintptr_t entry_point)
{
uintptr_t *core_entry = (uintptr_t *)PWRCTRL_ACPU_ASM_D_ARM_PARA_AD;
unsigned int i;
if (!core_entry) {
INFO("%s: core entry point is null!\n", __func__);
return;
}
i = cluster * CLUSTER_CORE_COUNT + core;
mmio_write_64((uintptr_t)(core_entry + i), entry_point);
}
void hisi_pwrc_set_cluster_wfi(unsigned int cluster)
{
unsigned int reg = 0;
if (cluster == 0) {
reg = mmio_read_32(ACPU_SC_SNOOP_PWD);
reg |= PD_DETECT_START0;
mmio_write_32(ACPU_SC_SNOOP_PWD, reg);
} else if (cluster == 1) {
reg = mmio_read_32(ACPU_SC_SNOOP_PWD);
reg |= PD_DETECT_START1;
mmio_write_32(ACPU_SC_SNOOP_PWD, reg);
}
}
int hisi_pwrc_setup(void)
{
unsigned int reg, sec_entrypoint;
extern char pm_asm_code[], pm_asm_code_end[];
extern char v7_asm[], v7_asm_end[];
sec_entrypoint = PWRCTRL_ACPU_ASM_CODE_BASE;
mmio_write_32(ACPU_SC_CPUx_RVBARADDR(0), sec_entrypoint >> 2);
mmio_write_32(ACPU_SC_CPUx_RVBARADDR(1), sec_entrypoint >> 2);
mmio_write_32(ACPU_SC_CPUx_RVBARADDR(2), sec_entrypoint >> 2);
mmio_write_32(ACPU_SC_CPUx_RVBARADDR(3), sec_entrypoint >> 2);
mmio_write_32(ACPU_SC_CPUx_RVBARADDR(4), sec_entrypoint >> 2);
mmio_write_32(ACPU_SC_CPUx_RVBARADDR(5), sec_entrypoint >> 2);
mmio_write_32(ACPU_SC_CPUx_RVBARADDR(6), sec_entrypoint >> 2);
mmio_write_32(ACPU_SC_CPUx_RVBARADDR(7), sec_entrypoint >> 2);
memset((void *)PWRCTRL_ACPU_ASM_SPACE_ADDR, 0, 0x400);
memcpy((void *)PWRCTRL_ACPU_ASM_SPACE_ADDR, (void *)v7_asm,
v7_asm_end - v7_asm);
memcpy((void *)PWRCTRL_ACPU_ASM_CODE_BASE, (void *)pm_asm_code,
pm_asm_code_end - pm_asm_code);
reg = mmio_read_32(AO_SC_SYS_CTRL1);
reg |= AO_SC_SYS_CTRL1_REMAP_SRAM_AARM |
AO_SC_SYS_CTRL1_REMAP_SRAM_AARM_MSK;
mmio_write_32(AO_SC_SYS_CTRL1, reg);
return 0;
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <cortex_a53.h>
#include <hi6220.h>
#include <hisi_sram_map.h>
.global pm_asm_code
.global pm_asm_code_end
.global v7_asm
.global v7_asm_end
.align 3
func pm_asm_code
mov x0, 0
msr oslar_el1, x0
mrs x0, CPUACTLR_EL1
bic x0, x0, #(CPUACTLR_RADIS | CPUACTLR_L1RADIS)
orr x0, x0, #0x180000
orr x0, x0, #0xe000
msr CPUACTLR_EL1, x0
mrs x3, actlr_el3
orr x3, x3, #ACTLR_EL3_L2ECTLR_BIT
msr actlr_el3, x3
mrs x3, actlr_el2
orr x3, x3, #ACTLR_EL2_L2ECTLR_BIT
msr actlr_el2, x3
ldr x3, =PWRCTRL_ACPU_ASM_D_ARM_PARA_AD
mrs x0, mpidr_el1
and x1, x0, #MPIDR_CPU_MASK
and x0, x0, #MPIDR_CLUSTER_MASK
add x0, x1, x0, LSR #6
pen: ldr x4, [x3, x0, LSL #3]
cbz x4, pen
mov x0, #0x0
mov x1, #0x0
mov x2, #0x0
mov x3, #0x0
br x4
.ltorg
pm_asm_code_end:
endfunc pm_asm_code
/*
* By default, all cores in Hi6220 reset with aarch32 mode.
* Now hardcode ARMv7 instructions to execute warm reset for
* switching aarch64 mode.
*/
.align 3
.section .rodata.v7_asm, "aS"
v7_asm:
.word 0xE1A00000 // nop
.word 0xE3A02003 // mov r2, #3
.word 0xEE0C2F50 // mcr 15, 0, r2, cr12, cr0, {2}
.word 0xE320F003 // wfi
.ltorg
v7_asm_end:
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __HI6220_H__
#define __HI6220_H__
#include <hi6220_regs_acpu.h>
#include <hi6220_regs_ao.h>
#include <hi6220_regs_peri.h>
#include <hi6220_regs_pin.h>
#include <hi6220_regs_pmctrl.h>
/*******************************************************************************
* Implementation defined ACTLR_EL2 bit definitions
******************************************************************************/
#define ACTLR_EL2_L2ACTLR_BIT (1 << 6)
#define ACTLR_EL2_L2ECTLR_BIT (1 << 5)
#define ACTLR_EL2_L2CTLR_BIT (1 << 4)
#define ACTLR_EL2_CPUECTLR_BIT (1 << 1)
#define ACTLR_EL2_CPUACTLR_BIT (1 << 0)
/*******************************************************************************
* Implementation defined ACTLR_EL3 bit definitions
******************************************************************************/
#define ACTLR_EL3_L2ACTLR_BIT (1 << 6)
#define ACTLR_EL3_L2ECTLR_BIT (1 << 5)
#define ACTLR_EL3_L2CTLR_BIT (1 << 4)
#define ACTLR_EL3_CPUECTLR_BIT (1 << 1)
#define ACTLR_EL3_CPUACTLR_BIT (1 << 0)
/*******************************************************************************
* CCI-400 related constants
******************************************************************************/
#define CCI400_BASE 0xF6E90000
#define CCI400_SL_IFACE3_CLUSTER_IX 3
#define CCI400_SL_IFACE4_CLUSTER_IX 4
#define DWMMC0_BASE 0xF723D000
#define DWUSB_BASE 0xF72C0000
#define PMUSSI_BASE 0xF8000000
#define SP804_TIMER0_BASE 0xF8008000
#define GPIO0_BASE 0xF8011000
#define GPIO1_BASE 0xF8012000
#define GPIO2_BASE 0xF8013000
#define GPIO3_BASE 0xF8014000
#define GPIO4_BASE 0xF7020000
#define GPIO5_BASE 0xF7021000
#define GPIO6_BASE 0xF7022000
#define GPIO7_BASE 0xF7023000
#define GPIO8_BASE 0xF7024000
#define GPIO9_BASE 0xF7025000
#define GPIO10_BASE 0xF7026000
#define GPIO11_BASE 0xF7027000
#define GPIO12_BASE 0xF7028000
#define GPIO13_BASE 0xF7029000
#define GPIO14_BASE 0xF702A000
#define GPIO15_BASE 0xF702B000
#define GPIO16_BASE 0xF702C000
#define GPIO17_BASE 0xF702D000
#define GPIO18_BASE 0xF702E000
#define GPIO19_BASE 0xF702F000
#endif /* __HI6220_H__ */
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __HI6220_REGS_ACPU_H__
#define __HI6220_REGS_ACPU_H__
#define ACPU_CTRL_BASE 0xF6504000
#define ACPU_SC_CPU_CTRL (ACPU_CTRL_BASE + 0x000)
#define ACPU_SC_CPU_STAT (ACPU_CTRL_BASE + 0x008)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFIL2 (1 << 0)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFIL2_SHIFT (0)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFI0 (1 << 1)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFI0_SHIFT (1)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFI1 (1 << 2)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFI1_SHIFT (2)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFI2 (1 << 3)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFI2_SHIFT (3)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFI3 (1 << 4)
#define ACPU_SC_CPU_STAT_SC_STANDBYWFI3_SHIFT (4)
#define ACPU_SC_CPU_STAT_A53_1_STANDBYWFIL2 (1 << 8)
#define ACPU_SC_CPU_STAT_A53_1_STANDBYWFIL2_SHIFT (8)
#define ACPU_SC_CPU_STAT_A53_1_STANDBYWFI (1 << 9)
#define ACPU_SC_CPU_STAT_A53_1_STANDBYWFI_SHIFT (9)
#define ACPU_SC_CPU_STAT_L2FLSHUDONE0 (1 << 16)
#define ACPU_SC_CPU_STAT_L2FLSHUDONE0_SHIFT (16)
#define ACPU_SC_CPU_STAT_L2FLSHUDONE1 (1 << 17)
#define ACPU_SC_CPU_STAT_L2FLSHUDONE1_SHIFT (17)
#define ACPU_SC_CPU_STAT_CCI400_ACTIVE (1 << 18)
#define ACPU_SC_CPU_STAT_CCI400_ACTIVE_SHIFT (18)
#define ACPU_SC_CPU_STAT_CLK_DIV_STATUS_VD (1 << 20)
#define ACPU_SC_CPU_STAT_CLK_DIV_STATUS_VD_SHIFT (20)
#define ACPU_SC_CLKEN (ACPU_CTRL_BASE + 0x00c)
#define HPM_L2_1_CLKEN (1 << 9)
#define G_CPU_1_CLKEN (1 << 8)
#define HPM_L2_CLKEN (1 << 1)
#define G_CPU_CLKEN (1 << 0)
#define ACPU_SC_CLKDIS (ACPU_CTRL_BASE + 0x010)
#define ACPU_SC_CLK_STAT (ACPU_CTRL_BASE + 0x014)
#define ACPU_SC_RSTEN (ACPU_CTRL_BASE + 0x018)
#define SRST_PRESET1_RSTEN (1 << 11)
#define SRST_PRESET0_RSTEN (1 << 10)
#define SRST_CLUSTER1_RSTEN (1 << 9)
#define SRST_CLUSTER0_RSTEN (1 << 8)
#define SRST_L2_HPM_1_RSTEN (1 << 5)
#define SRST_AARM_L2_1_RSTEN (1 << 4)
#define SRST_L2_HPM_0_RSTEN (1 << 3)
#define SRST_AARM_L2_0_RSTEN (1 << 1)
#define SRST_CLUSTER1 (SRST_PRESET1_RSTEN | \
SRST_CLUSTER1_RSTEN | \
SRST_L2_HPM_1_RSTEN | \
SRST_AARM_L2_1_RSTEN)
#define SRST_CLUSTER0 (SRST_PRESET0_RSTEN | \
SRST_CLUSTER0_RSTEN | \
SRST_L2_HPM_0_RSTEN | \
SRST_AARM_L2_0_RSTEN)
#define ACPU_SC_RSTDIS (ACPU_CTRL_BASE + 0x01c)
#define ACPU_SC_RST_STAT (ACPU_CTRL_BASE + 0x020)
#define ACPU_SC_PDBGUP_MBIST (ACPU_CTRL_BASE + 0x02c)
#define PDBGUP_CLUSTER1_SHIFT 8
#define ACPU_SC_VD_CTRL (ACPU_CTRL_BASE + 0x054)
#define ACPU_SC_VD_MASK_PATTERN_CTRL (ACPU_CTRL_BASE + 0x058)
#define ACPU_SC_VD_MASK_PATTERN_VAL (0xCCB << 12)
#define ACPU_SC_VD_MASK_PATTERN_MASK ((0x1 << 13) - 1)
#define ACPU_SC_VD_DLY_FIXED_CTRL (ACPU_CTRL_BASE + 0x05c)
#define ACPU_SC_VD_DLY_TABLE0_CTRL (ACPU_CTRL_BASE + 0x060)
#define ACPU_SC_VD_DLY_TABLE1_CTRL (ACPU_CTRL_BASE + 0x064)
#define ACPU_SC_VD_DLY_TABLE2_CTRL (ACPU_CTRL_BASE + 0x068)
#define ACPU_SC_VD_HPM_CTRL (ACPU_CTRL_BASE + 0x06c)
#define ACPU_SC_A53_CLUSTER_MTCMOS_EN (ACPU_CTRL_BASE + 0x088)
#define PW_MTCMOS_EN_A53_1_EN (1 << 1)
#define PW_MTCMOS_EN_A53_0_EN (1 << 0)
#define ACPU_SC_A53_CLUSTER_MTCMOS_STA (ACPU_CTRL_BASE + 0x090)
#define ACPU_SC_A53_CLUSTER_ISO_EN (ACPU_CTRL_BASE + 0x098)
#define PW_ISO_A53_1_EN (1 << 1)
#define PW_ISO_A53_0_EN (1 << 0)
#define ACPU_SC_A53_CLUSTER_ISO_DIS (ACPU_CTRL_BASE + 0x09c)
#define ACPU_SC_A53_CLUSTER_ISO_STA (ACPU_CTRL_BASE + 0x0a0)
#define ACPU_SC_A53_1_MTCMOS_TIMER (ACPU_CTRL_BASE + 0x0b4)
#define ACPU_SC_A53_0_MTCMOS_TIMER (ACPU_CTRL_BASE + 0x0bc)
#define ACPU_SC_A53_x_MTCMOS_TIMER(x) ((x) ? ACPU_SC_A53_1_MTCMOS_TIMER : ACPU_SC_A53_0_MTCMOS_TIMER)
#define ACPU_SC_SNOOP_PWD (ACPU_CTRL_BASE + 0xe4)
#define PD_DETECT_START1 (1 << 16)
#define PD_DETECT_START0 (1 << 0)
#define ACPU_SC_CPU0_CTRL (ACPU_CTRL_BASE + 0x100)
#define CPU_CTRL_AARCH64_MODE (1 << 7)
#define ACPU_SC_CPU0_STAT (ACPU_CTRL_BASE + 0x104)
#define ACPU_SC_CPU0_CLKEN (ACPU_CTRL_BASE + 0x108)
#define CPU_CLKEN_HPM (1 << 1)
#define ACPU_SC_CPU0_CLK_STAT (ACPU_CTRL_BASE + 0x110)
#define ACPU_SC_CPU0_RSTEN (ACPU_CTRL_BASE + 0x114)
#define ACPU_SC_CPU0_RSTDIS (ACPU_CTRL_BASE + 0x118)
#define ACPU_SC_CPU0_MTCMOS_EN (ACPU_CTRL_BASE + 0x120)
#define CPU_MTCMOS_PW (1 << 0)
#define ACPU_SC_CPU0_PW_ISOEN (ACPU_CTRL_BASE + 0x130)
#define CPU_PW_ISO (1 << 0)
#define ACPU_SC_CPU0_PW_ISODIS (ACPU_CTRL_BASE + 0x134)
#define ACPU_SC_CPU0_PW_ISO_STAT (ACPU_CTRL_BASE + 0x138)
#define ACPU_SC_CPU0_MTCMOS_TIMER_STAT (ACPU_CTRL_BASE + 0x154)
#define CPU_MTCMOS_TIMER_STA (1 << 0)
#define ACPU_SC_CPU0_RVBARADDR (ACPU_CTRL_BASE + 0x158)
#define ACPU_SC_CPU1_CTRL (ACPU_CTRL_BASE + 0x200)
#define ACPU_SC_CPU1_STAT (ACPU_CTRL_BASE + 0x204)
#define ACPU_SC_CPU1_CLKEN (ACPU_CTRL_BASE + 0x208)
#define ACPU_SC_CPU1_CLK_STAT (ACPU_CTRL_BASE + 0x210)
#define ACPU_SC_CPU1_RSTEN (ACPU_CTRL_BASE + 0x214)
#define ACPU_SC_CPU1_RSTDIS (ACPU_CTRL_BASE + 0x218)
#define ACPU_SC_CPU1_MTCMOS_EN (ACPU_CTRL_BASE + 0x220)
#define ACPU_SC_CPU1_PW_ISODIS (ACPU_CTRL_BASE + 0x234)
#define ACPU_SC_CPU1_PW_ISO_STAT (ACPU_CTRL_BASE + 0x238)
#define ACPU_SC_CPU1_MTCMOS_TIMER_STAT (ACPU_CTRL_BASE + 0x254)
#define ACPU_SC_CPU1_RVBARADDR (ACPU_CTRL_BASE + 0x258)
#define ACPU_SC_CPU2_CTRL (ACPU_CTRL_BASE + 0x300)
#define ACPU_SC_CPU2_STAT (ACPU_CTRL_BASE + 0x304)
#define ACPU_SC_CPU2_CLKEN (ACPU_CTRL_BASE + 0x308)
#define ACPU_SC_CPU2_CLK_STAT (ACPU_CTRL_BASE + 0x310)
#define ACPU_SC_CPU2_RSTEN (ACPU_CTRL_BASE + 0x314)
#define ACPU_SC_CPU2_RSTDIS (ACPU_CTRL_BASE + 0x318)
#define ACPU_SC_CPU2_MTCMOS_EN (ACPU_CTRL_BASE + 0x320)
#define ACPU_SC_CPU2_PW_ISODIS (ACPU_CTRL_BASE + 0x334)
#define ACPU_SC_CPU2_PW_ISO_STAT (ACPU_CTRL_BASE + 0x338)
#define ACPU_SC_CPU2_MTCMOS_TIMER_STAT (ACPU_CTRL_BASE + 0x354)
#define ACPU_SC_CPU2_RVBARADDR (ACPU_CTRL_BASE + 0x358)
#define ACPU_SC_CPU3_CTRL (ACPU_CTRL_BASE + 0x400)
#define ACPU_SC_CPU3_STAT (ACPU_CTRL_BASE + 0x404)
#define ACPU_SC_CPU3_CLKEN (ACPU_CTRL_BASE + 0x408)
#define ACPU_SC_CPU3_CLK_STAT (ACPU_CTRL_BASE + 0x410)
#define ACPU_SC_CPU3_RSTEN (ACPU_CTRL_BASE + 0x414)
#define ACPU_SC_CPU3_RSTDIS (ACPU_CTRL_BASE + 0x418)
#define ACPU_SC_CPU3_MTCMOS_EN (ACPU_CTRL_BASE + 0x420)
#define ACPU_SC_CPU3_PW_ISODIS (ACPU_CTRL_BASE + 0x434)
#define ACPU_SC_CPU3_PW_ISO_STAT (ACPU_CTRL_BASE + 0x438)
#define ACPU_SC_CPU3_MTCMOS_TIMER_STAT (ACPU_CTRL_BASE + 0x454)
#define ACPU_SC_CPU3_RVBARADDR (ACPU_CTRL_BASE + 0x458)
#define ACPU_SC_CPU4_CTRL (ACPU_CTRL_BASE + 0x500)
#define ACPU_SC_CPU4_STAT (ACPU_CTRL_BASE + 0x504)
#define ACPU_SC_CPU4_CLKEN (ACPU_CTRL_BASE + 0x508)
#define ACPU_SC_CPU4_CLK_STAT (ACPU_CTRL_BASE + 0x510)
#define ACPU_SC_CPU4_RSTEN (ACPU_CTRL_BASE + 0x514)
#define ACPU_SC_CPU4_RSTDIS (ACPU_CTRL_BASE + 0x518)
#define ACPU_SC_CPU4_MTCMOS_EN (ACPU_CTRL_BASE + 0x520)
#define ACPU_SC_CPU4_PW_ISODIS (ACPU_CTRL_BASE + 0x534)
#define ACPU_SC_CPU4_PW_ISO_STAT (ACPU_CTRL_BASE + 0x538)
#define ACPU_SC_CPU4_MTCMOS_TIMER_STAT (ACPU_CTRL_BASE + 0x554)
#define ACPU_SC_CPU4_RVBARADDR (ACPU_CTRL_BASE + 0x558)
#define ACPU_SC_CPU5_CTRL (ACPU_CTRL_BASE + 0x600)
#define ACPU_SC_CPU5_STAT (ACPU_CTRL_BASE + 0x604)
#define ACPU_SC_CPU5_CLKEN (ACPU_CTRL_BASE + 0x608)
#define ACPU_SC_CPU5_CLK_STAT (ACPU_CTRL_BASE + 0x610)
#define ACPU_SC_CPU5_RSTEN (ACPU_CTRL_BASE + 0x614)
#define ACPU_SC_CPU5_RSTDIS (ACPU_CTRL_BASE + 0x618)
#define ACPU_SC_CPU5_MTCMOS_EN (ACPU_CTRL_BASE + 0x620)
#define ACPU_SC_CPU5_PW_ISODIS (ACPU_CTRL_BASE + 0x634)
#define ACPU_SC_CPU5_PW_ISO_STAT (ACPU_CTRL_BASE + 0x638)
#define ACPU_SC_CPU5_MTCMOS_TIMER_STAT (ACPU_CTRL_BASE + 0x654)
#define ACPU_SC_CPU5_RVBARADDR (ACPU_CTRL_BASE + 0x658)
#define ACPU_SC_CPU6_CTRL (ACPU_CTRL_BASE + 0x700)
#define ACPU_SC_CPU6_STAT (ACPU_CTRL_BASE + 0x704)
#define ACPU_SC_CPU6_CLKEN (ACPU_CTRL_BASE + 0x708)
#define ACPU_SC_CPU6_CLK_STAT (ACPU_CTRL_BASE + 0x710)
#define ACPU_SC_CPU6_RSTEN (ACPU_CTRL_BASE + 0x714)
#define ACPU_SC_CPU6_RSTDIS (ACPU_CTRL_BASE + 0x718)
#define ACPU_SC_CPU6_MTCMOS_EN (ACPU_CTRL_BASE + 0x720)
#define ACPU_SC_CPU6_PW_ISODIS (ACPU_CTRL_BASE + 0x734)
#define ACPU_SC_CPU6_PW_ISO_STAT (ACPU_CTRL_BASE + 0x738)
#define ACPU_SC_CPU6_MTCMOS_TIMER_STAT (ACPU_CTRL_BASE + 0x754)
#define ACPU_SC_CPU6_RVBARADDR (ACPU_CTRL_BASE + 0x758)
#define ACPU_SC_CPU7_CTRL (ACPU_CTRL_BASE + 0x800)
#define ACPU_SC_CPU7_STAT (ACPU_CTRL_BASE + 0x804)
#define ACPU_SC_CPU7_CLKEN (ACPU_CTRL_BASE + 0x808)
#define ACPU_SC_CPU7_CLK_STAT (ACPU_CTRL_BASE + 0x810)
#define ACPU_SC_CPU7_RSTEN (ACPU_CTRL_BASE + 0x814)
#define ACPU_SC_CPU7_RSTDIS (ACPU_CTRL_BASE + 0x818)
#define ACPU_SC_CPU7_MTCMOS_EN (ACPU_CTRL_BASE + 0x820)
#define ACPU_SC_CPU7_PW_ISODIS (ACPU_CTRL_BASE + 0x834)
#define ACPU_SC_CPU7_PW_ISO_STAT (ACPU_CTRL_BASE + 0x838)
#define ACPU_SC_CPU7_MTCMOS_TIMER_STAT (ACPU_CTRL_BASE + 0x854)
#define ACPU_SC_CPU7_RVBARADDR (ACPU_CTRL_BASE + 0x858)
#define ACPU_SC_CPUx_CTRL(x) ((x < 8) ? (ACPU_SC_CPU0_CTRL + 0x100 * x) : ACPU_SC_CPU0_CTRL)
#define ACPU_SC_CPUx_STAT(x) ((x < 8) ? (ACPU_SC_CPU0_STAT + 0x100 * x) : ACPU_SC_CPU0_STAT)
#define ACPU_SC_CPUx_CLKEN(x) ((x < 8) ? (ACPU_SC_CPU0_CLKEN + 0x100 * x) : ACPU_SC_CPU0_CLKEN)
#define ACPU_SC_CPUx_CLK_STAT(x) ((x < 8) ? (ACPU_SC_CPU0_CLK_STAT + 0x100 * x) : ACPU_SC_CPU0_CLK_STAT)
#define ACPU_SC_CPUx_RSTEN(x) ((x < 8) ? (ACPU_SC_CPU0_RSTEN + 0x100 * x) : ACPU_SC_CPU0_RSTEN)
#define ACPU_SC_CPUx_RSTDIS(x) ((x < 8) ? (ACPU_SC_CPU0_RSTDIS + 0x100 * x) : ACPU_SC_CPU0_RSTDIS)
#define ACPU_SC_CPUx_MTCMOS_EN(x) ((x < 8) ? (ACPU_SC_CPU0_MTCMOS_EN + 0x100 * x) : ACPU_SC_CPU0_MTCMOS_EN)
#define ACPU_SC_CPUx_PW_ISODIS(x) ((x < 8) ? (ACPU_SC_CPU0_PW_ISODIS + 0x100 * x) : ACPU_SC_CPU0_PW_ISODIS)
#define ACPU_SC_CPUx_PW_ISO_STAT(x) ((x < 8) ? (ACPU_SC_CPU0_PW_ISO_STAT + 0x100 * x) : ACPU_SC_CPU0_PW_ISO_STAT)
#define ACPU_SC_CPUx_MTCMOS_TIMER_STAT(x) ((x < 8) ? (ACPU_SC_CPU0_MTCMOS_TIMER_STAT + 0x100 * x) : ACPU_SC_CPU0_MTCMOS_TIMER_STAT)
#define ACPU_SC_CPUx_RVBARADDR(x) ((x < 8) ? (ACPU_SC_CPU0_RVBARADDR + 0x100 * x) : ACPU_SC_CPU0_RVBARADDR)
#define ACPU_SC_CPU_STAT_CLKDIV_VD_MASK (3 << 20)
#define ACPU_SC_VD_CTRL_TUNE_EN_DIF (1 << 0)
#define ACPU_SC_VD_CTRL_TUNE_EN_DIF_SHIFT (0)
#define ACPU_SC_VD_CTRL_TUNE (1 << 1)
#define ACPU_SC_VD_CTRL_TUNE_SHIFT (1)
#define ACPU_SC_VD_CTRL_CALIBRATE_EN_DIF (1 << 7)
#define ACPU_SC_VD_CTRL_CALIBRATE_EN_DIF_SHIFT (7)
#define ACPU_SC_VD_CTRL_CALIBRATE_EN_INI (1 << 8)
#define ACPU_SC_VD_CTRL_CALIBRATE_EN_INI_SHIFT (8)
#define ACPU_SC_VD_CTRL_CLK_DIS_CNT_CLR (1 << 9)
#define ACPU_SC_VD_CTRL_CLK_DIS_CNT_CLR_SHIFT (9)
#define ACPU_SC_VD_CTRL_CLK_DIS_CNT_EN (1 << 10)
#define ACPU_SC_VD_CTRL_CLK_DIS_CNT_EN_SHIFT (10)
#define ACPU_SC_VD_CTRL_TUNE_EN_INT (1 << 11)
#define ACPU_SC_VD_CTRL_TUNE_EN_INT_SHIFT (11)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE0 (1 << 12)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE0_MASK (0xf << 12)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE0_SHIFT (12)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE1 (1 << 16)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE1_MASK (0xf << 16)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE1_SHIFT (16)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE2 (1 << 20)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE2_MASK (0xf << 20)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE2_SHIFT (20)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE3 (1 << 24)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE3_MASK (0xf << 24)
#define ACPU_SC_VD_CTRL_SHIFT_TABLE3_SHIFT (24)
#define ACPU_SC_VD_CTRL_FORCE_CLK_EN (1 << 28)
#define ACPU_SC_VD_CTRL_FORCE_CLK_EN_SHIFT (28)
#define ACPU_SC_VD_CTRL_DIV_EN_DIF (1 << 29)
#define ACPU_SC_VD_CTRL_DIV_EN_DIF_SHIFT (29)
#define ACPU_SC_VD_SHIFT_TABLE_TUNE_VAL \
((0x1 << ACPU_SC_VD_CTRL_SHIFT_TABLE0_SHIFT) | \
(0x3 << ACPU_SC_VD_CTRL_SHIFT_TABLE1_SHIFT) | \
(0x5 << ACPU_SC_VD_CTRL_SHIFT_TABLE2_SHIFT) | \
(0x6 << ACPU_SC_VD_CTRL_SHIFT_TABLE3_SHIFT) | \
(0x7 << ACPU_SC_VD_CTRL_TUNE_SHIFT))
#define ACPU_SC_VD_SHIFT_TABLE_TUNE_MASK \
((0xF << ACPU_SC_VD_CTRL_SHIFT_TABLE0_SHIFT) | \
(0xF << ACPU_SC_VD_CTRL_SHIFT_TABLE1_SHIFT) | \
(0xF << ACPU_SC_VD_CTRL_SHIFT_TABLE2_SHIFT) | \
(0xF << ACPU_SC_VD_CTRL_SHIFT_TABLE3_SHIFT) | \
(0x3F << ACPU_SC_VD_CTRL_TUNE_SHIFT))
#define ACPU_SC_VD_HPM_CTRL_OSC_DIV (1 << 0)
#define ACPU_SC_VD_HPM_CTRL_OSC_DIV_SHIFT (0)
#define ACPU_SC_VD_HPM_CTRL_OSC_DIV_MASK (0x000000FF)
#define ACPU_SC_VD_HPM_CTRL_DLY_EXP (1 << 8)
#define ACPU_SC_VD_HPM_CTRL_DLY_EXP_SHIFT (8)
#define ACPU_SC_VD_HPM_CTRL_DLY_EXP_MASK (0x001FFF00)
#define HPM_OSC_DIV_VAL \
(0x56 << ACPU_SC_VD_HPM_CTRL_OSC_DIV_SHIFT)
#define HPM_OSC_DIV_MASK \
(ACPU_SC_VD_HPM_CTRL_OSC_DIV_MASK)
#define HPM_DLY_EXP_VAL \
(0xC7A << ACPU_SC_VD_HPM_CTRL_DLY_EXP_SHIFT)
#define HPM_DLY_EXP_MASK \
(ACPU_SC_VD_HPM_CTRL_DLY_EXP_MASK)
#define ACPU_SC_VD_EN_ASIC_VAL \
((0x0 << ACPU_SC_VD_CTRL_FORCE_CLK_EN_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_CLK_DIS_CNT_EN_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_CALIBRATE_EN_INI_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_CALIBRATE_EN_DIF_SHIFT) | \
(0X0 << ACPU_SC_VD_CTRL_DIV_EN_DIF_SHIFT) | \
(0X0 << ACPU_SC_VD_CTRL_TUNE_EN_INT_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_TUNE_EN_DIF_SHIFT))
#define ACPU_SC_VD_EN_SFT_VAL \
((0x0 << ACPU_SC_VD_CTRL_FORCE_CLK_EN_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_CLK_DIS_CNT_EN_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_CALIBRATE_EN_INI_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_CALIBRATE_EN_DIF_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_DIV_EN_DIF_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_TUNE_EN_INT_SHIFT) | \
(0x0 << ACPU_SC_VD_CTRL_TUNE_EN_DIF_SHIFT))
#define ACPU_SC_VD_EN_MASK \
((0x1 << ACPU_SC_VD_CTRL_FORCE_CLK_EN_SHIFT) | \
(0x1 << ACPU_SC_VD_CTRL_CLK_DIS_CNT_EN_SHIFT) | \
(0x1 << ACPU_SC_VD_CTRL_CALIBRATE_EN_INI_SHIFT) | \
(0x1 << ACPU_SC_VD_CTRL_CALIBRATE_EN_DIF_SHIFT) | \
(0x1 << ACPU_SC_VD_CTRL_DIV_EN_DIF_SHIFT) | \
(0x1 << ACPU_SC_VD_CTRL_TUNE_EN_INT_SHIFT) | \
(0x1 << ACPU_SC_VD_CTRL_TUNE_EN_DIF_SHIFT))
#endif /* __HI6220_REGS_ACPU_H__ */
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment