1. 13 Jan, 2015 1 commit
    • Soby Mathew's avatar
      Invalidate the dcache after initializing cpu-ops · 09997346
      Soby Mathew authored
      This patch fixes a crash due to corruption of cpu_ops
      data structure. During the secondary CPU boot, after the
      cpu_ops has been initialized in the per cpu-data, the
      dcache lines need to invalidated so that the update in
      memory can be seen later on when the dcaches are turned ON.
      Also, after initializing the psci per cpu data, the dcache
      lines are flushed so that they are written back to memory
      and dirty dcache lines are avoided.
      
      Fixes ARM-Software/tf-issues#271
      
      Change-Id: Ia90f55e9882690ead61226eea5a5a9146d35f313
      09997346
  2. 12 Dec, 2014 1 commit
    • Soby Mathew's avatar
      Fix CPU_SUSPEND when invoked with affinity level higher than get_max_afflvl() · 264999fc
      Soby Mathew authored
      This patch fixes the assertion failure when CPU_SUSPEND is invoked with
      an affinity level higher than supported by the platform by adding suitable
      checks for affinity level within `psci_cpu_suspend`. Also added suitable
      bound checks within `psci_aff_map_get_idx` to prevent indexing beyond array
      limits.
      
      Fixes ARM-software/tf-issues#260
      
      Change-Id: I04b75c49729e6c6d1983add590f60146c8fc3630
      264999fc
  3. 04 Dec, 2014 1 commit
    • Soby Mathew's avatar
      Fix the array size of mpidr_aff_map_nodes_t. · 235585b1
      Soby Mathew authored
      This patch fixes the array size of mpidr_aff_map_nodes_t which
      was less by one element.
      
      Fixes ARM-software/tf-issues#264
      
      Change-Id: I48264f6f9e7046a3d0f4cbcd63b9ba49657e8818
      235585b1
  4. 20 Aug, 2014 1 commit
    • Soby Mathew's avatar
      Add CPU specific power management operations · add40351
      Soby Mathew authored
      This patch adds CPU core and cluster power down sequences to the CPU specific
      operations framework introduced in a earlier patch. Cortex-A53, Cortex-A57 and
      generic AEM sequences have been added. The latter is suitable for the
      Foundation and Base AEM FVPs. A pointer to each CPU's operations structure is
      saved in the per-cpu data so that it can be easily accessed during power down
      seqeunces.
      
      An optional platform API has been introduced to allow a platform to disable the
      Accelerator Coherency Port (ACP) during a cluster power down sequence. The weak
      definition of this function (plat_disable_acp()) does not take any action. It
      should be overriden with a strong definition if the ACP is present on a
      platform.
      
      Change-Id: I8d09bd40d2f528a28d2d3f19b77101178778685d
      add40351
  5. 19 Aug, 2014 5 commits
    • Achin Gupta's avatar
      Miscellaneous PSCI code cleanups · a4a8eaeb
      Achin Gupta authored
      This patch implements the following cleanups in PSCI generic code:
      
      1. It reworks the affinity level specific handlers in the PSCI implementation
         such that.
      
         a. Usage of the 'rc' local variable is restricted to only where it is
            absolutely needed
      
         b. 'plat_state' local variable is defined only when a direct invocation of
            plat_get_phys_state() does not suffice.
      
         c. If a platform handler is not registered then the level specific handler
            returns early.
      
      2. It limits the use of the mpidr_aff_map_nodes_t typedef to declaration of
         arrays of the type instead of using it in function prototypes as well.
      
      3. It removes dangling declarations of __psci_cpu_off() and
         __psci_cpu_suspend(). The definitions of these functions were removed in
         earlier patches.
      
      Change-Id: I51e851967c148be9c2eeda3a3c41878f7b4d6978
      a4a8eaeb
    • Achin Gupta's avatar
      Add APIs to preserve highest affinity level in OFF state · 0a46e2c3
      Achin Gupta authored
      This patch adds APIs to find, save and retrieve the highest affinity level which
      will enter or exit from the physical OFF state during a PSCI power management
      operation. The level is stored in per-cpu data.
      
      It then reworks the PSCI implementation to perform cache maintenance only
      when the handler for the highest affinity level to enter/exit the OFF state is
      called.
      
      For example. during a CPU_SUSPEND operation, state management is done prior to
      calling the affinity level specific handlers. The highest affinity level which
      will be turned off is determined using the psci_find_max_phys_off_afflvl()
      API. This level is saved using the psci_set_max_phys_off_afflvl() API. In the
      code that does generic handling for each level, prior to performing cache
      maintenance it is first determined if the current affinity level matches the
      value returned by psci_get_max_phys_off_afflvl(). Cache maintenance is done if
      the values match.
      
      This change allows the last CPU in a cluster to perform cache maintenance
      independently. Earlier, cache maintenance was started in the level 0 handler and
      finished in the level 1 handler. This change in approach will facilitate
      implementation of tf-issues#98.
      
      Change-Id: I57233f0a27b3ddd6ddca6deb6a88b234525b0ae6
      0a46e2c3
    • Achin Gupta's avatar
      Rework state management in the PSCI implementation · 84c9f100
      Achin Gupta authored
      This patch pulls out state management from the affinity level specific handlers
      into the top level functions specific to the operation
      i.e. psci_afflvl_suspend(), psci_afflvl_on() etc.
      
      In the power down path this patch will allow an affinity instance at level X to
      determine the state that an affinity instance at level X+1 will enter before the
      level specific handlers are called. This will be useful to determine whether a
      CPU is the last in the cluster during a suspend/off request and so on.
      
      Similarly, in the power up path this patch will allow an affinity instance at
      level X to determine the state that an affinity instance at level X+1 has
      emerged from, even after the level specific handlers have been called. This will
      be useful in determining whether a CPU is the first in the cluster during a
      on/resume request and so on.
      
      As before, while powering down, state is updated before the level specific
      handlers are invoked so that they can perform actions based upon their target
      state. While powering up, state is updated after the level specific handlers have
      been invoked so that they can perform actions based upon the state they emerged
      from.
      
      Change-Id: I40fe64cb61bb096c66f88f6d493a1931243cfd37
      84c9f100
    • Achin Gupta's avatar
      Add PSCI service specific per-CPU data · 776b68ae
      Achin Gupta authored
      This patch adds a structure defined by the PSCI service to the per-CPU data
      array. The structure is used to save the 'power_state' parameter specified
      during a 'cpu_suspend' call on the current CPU. This parameter was being saved
      in the cpu node in the PSCI topology tree earlier.
      
      The existing API to return the state id specified during a PSCI CPU_SUSPEND call
      i.e. psci_get_suspend_stateid(mpidr) has been renamed to
      psci_get_suspend_stateid_by_mpidr(mpidr). The new psci_get_suspend_stateid() API
      returns the state id of the current cpu.
      
      The psci_get_suspend_afflvl() API has been changed to return the target affinity
      level of the current CPU. This was specified using the 'mpidr' parameter in the
      old implementation.
      
      The behaviour of the get_power_on_target_afflvl() has been tweaked such that
      traversal of the PSCI topology tree to locate the affinity instance node for the
      current CPU is done only in the debug build as it is an expensive operation.
      
      Change-Id: Iaad49db75abda471f6a82d697ee6e0df554c4caf
      776b68ae
    • Juan Castillo's avatar
      Add support for PSCI SYSTEM_OFF and SYSTEM_RESET APIs · d5f13093
      Juan Castillo authored
      This patch adds support for SYSTEM_OFF and SYSTEM_RESET PSCI
      operations. A platform should export handlers to complete the
      requested operation. The FVP port exports fvp_system_off() and
      fvp_system_reset() as an example.
      
      If the SPD provides a power management hook for system off and
      system reset, then the SPD is notified about the corresponding
      operation so it can do some bookkeeping. The TSPD exports
      tspd_system_off() and tspd_system_reset() for that purpose.
      
      Versatile Express shutdown and reset methods have been removed
      from the FDT as new PSCI sys_poweroff and sys_reset services
      have been added. For those kernels that do not support yet these
      PSCI services (i.e. GICv3 kernel), the original dtsi files have
      been renamed to *-no_psci.dtsi.
      
      Fixes ARM-software/tf-issues#218
      
      Change-Id: Ic8a3bf801db979099ab7029162af041c4e8330c8
      d5f13093
  6. 15 Aug, 2014 1 commit
    • Achin Gupta's avatar
      Unmask SError interrupt and clear SCR_EL3.EA bit · 0c8d4fef
      Achin Gupta authored
      This patch disables routing of external aborts from lower exception levels to
      EL3 and ensures that a SError interrupt generated as a result of execution in
      EL3 is taken locally instead of a lower exception level.
      
      The SError interrupt is enabled in the TSP code only when the operation has not
      been directly initiated by the normal world. This is to prevent the possibility
      of an asynchronous external abort which originated in normal world from being
      taken when execution is in S-EL1.
      
      Fixes ARM-software/tf-issues#153
      
      Change-Id: I157b996c75996d12fd86d27e98bc73dd8bce6cd5
      0c8d4fef
  7. 31 Jul, 2014 1 commit
    • Soby Mathew's avatar
      Optimize EL3 register state stored in cpu_context structure · fdfabec1
      Soby Mathew authored
      This patch further optimizes the EL3 register state stored in
      cpu_context. The 2 registers which are removed from cpu_context are:
      
        * cntfrq_el0 is the system timer register which is writable
          only in EL3 and it can be programmed during cold/warm boot. Hence
          it need not be saved to cpu_context.
      
        * cptr_el3 controls access to Trace, Floating-point, and Advanced
          SIMD functionality and it is programmed every time during cold
          and warm boot. The current BL3-1 implementation does not need to
          modify the access controls during normal execution and hence
          they are expected to remain static.
      
      Fixes ARM-software/tf-issues#197
      
      Change-Id: I599ceee3b73a7dcfd37069fd41b60e3d397a7b18
      fdfabec1
  8. 28 Jul, 2014 2 commits
    • Achin Gupta's avatar
      Simplify management of SCTLR_EL3 and SCTLR_EL1 · ec3c1003
      Achin Gupta authored
      This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of
      SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset
      in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in
      S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They
      do not have to be saved and restored either. The M, WXN and optionally the C
      bit are set in the enable_mmu_elX() function. This is done during both the warm
      and cold boot paths.
      
      Fixes ARM-software/tf-issues#226
      
      Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
      ec3c1003
    • Achin Gupta's avatar
      Remove the concept of coherent stacks · 539a7b38
      Achin Gupta authored
      This patch removes the allocation of memory for coherent stacks, associated
      accessor function and some dead code which called the accessor function. It also
      updates the porting guide to remove the concept and the motivation behind using
      stacks allocated in coherent memory.
      
      Fixes ARM-software/tf-issues#198
      
      Change-Id: I00ff9a04f693a03df3627ba39727e3497263fc38
      539a7b38
  9. 19 Jul, 2014 2 commits
    • Achin Gupta's avatar
      Remove coherent stack usage from the warm boot path · b51da821
      Achin Gupta authored
      This patch uses stacks allocated in normal memory to enable the MMU early in the
      warm boot path thus removing the dependency on stacks allocated in coherent
      memory. Necessary cache and stack maintenance is performed when a cpu is being
      powered down and up. This avoids any coherency issues that can arise from
      reading speculatively fetched stale stack memory from another CPUs cache. These
      changes affect the warm boot path in both BL3-1 and BL3-2.
      
      The EL3 system registers responsible for preserving the MMU state are not saved
      and restored any longer. Static values are used to program these system
      registers when a cpu is powered on or resumed from suspend.
      
      Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
      b51da821
    • Achin Gupta's avatar
      Make enablement of the MMU more flexible · afff8cbd
      Achin Gupta authored
      This patch adds a 'flags' parameter to each exception level specific function
      responsible for enabling the MMU. At present only a single flag which indicates
      whether the data cache should also be enabled is implemented. Subsequent patches
      will use this flag when enabling the MMU in the warm boot paths.
      
      Change-Id: I0eafae1e678c9ecc604e680851093f1680e9cefa
      afff8cbd
  10. 25 Jun, 2014 1 commit
    • Andrew Thoelke's avatar
      Remove current CPU mpidr from PSCI common code · 56378aa6
      Andrew Thoelke authored
      Many of the interfaces internal to PSCI pass the current CPU
      MPIDR_EL1 value from function to function. This is not required,
      and with inline access to the system registers is less efficient
      than requiring the code to read that register whenever required.
      
      This patch remove the mpidr parameter from the affected interfaces
      and reduces code in FVP BL3-1 size by 160 bytes.
      
      Change-Id: I16120a7c6944de37232016d7e109976540775602
      56378aa6
  11. 24 Jun, 2014 1 commit
  12. 23 Jun, 2014 4 commits
    • Andrew Thoelke's avatar
      Remove calling CPU mpidr from bakery lock API · 634ec6c2
      Andrew Thoelke authored
      The bakery lock code currently expects the calling code to pass
      the MPIDR_EL1 of the current CPU.
      
      This is not always done correctly. Also the change to provide
      inline access to system registers makes it more efficient for the
      bakery lock code to obtain the MPIDR_EL1 directly.
      
      This change removes the mpidr parameter from the bakery lock
      interface, and results in a code reduction of 160 bytes for the
      ARM FVP port.
      
      Fixes ARM-software/tf-issues#213
      
      Change-Id: I7ec7bd117bcc9794a0d948990fcf3336a367d543
      634ec6c2
    • Andrew Thoelke's avatar
      Correctly dimension the PSCI aff_map_node array · 6c0b45d1
      Andrew Thoelke authored
      The array of affinity nodes is currently allocated for 32 entries
      with the PSCI_NUM_AFFS value defined in psci.h. This is not enough
      for large systems, and will substantially over allocate the array
      for small systems.
      
      This patch introduces an optional platform definition
      PLATFORM_NUM_AFFS to platform_def.h. If defined this value is
      used for PSCI_NUM_AFFS, otherwise a value of two times the number
      of CPU cores is used.
      
      The FVP port defines PLATFORM_NUM_AFFS to be 10 which saves
      nearly 1.5KB of memory.
      
      Fixes ARM-software/tf-issues#192
      
      Change-Id: I68e30ac950de88cfbd02982ba882a18fb69c1445
      6c0b45d1
    • Andrew Thoelke's avatar
      Eliminate psci_suspend_context array · 13ac44a5
      Andrew Thoelke authored
      psci_suspend_context is an array of cache-line aligned structures
      containing the single power_state integer per cpu. This array is
      the only structure indexed by the aff_map_node.data integer.
      
      This patch saves 2KB of BL3-1 memory by placing the CPU
      power_state value directly in the aff_map_node structure. As a
      result, this value is now never cached and the cache clean when
      writing the value is no longer required.
      
      Fixes ARM-software/tf-issues#195
      
      Change-Id: Ib4c70c8f79eed295ea541e7827977a588a19ef9b
      13ac44a5
    • Andrew Thoelke's avatar
      Initialise CPU contexts from entry_point_info · 167a9357
      Andrew Thoelke authored
      Consolidate all BL3-1 CPU context initialization for cold boot, PSCI
      and SPDs into two functions:
      *  The first uses entry_point_info to initialize the relevant
         cpu_context for first entry into a lower exception level on a CPU
      *  The second populates the EL1 and EL2 system registers as needed
         from the cpu_context to ensure correct entry into the lower EL
      
      This patch alters the way that BL3-1 determines which exception level
      is used when first entering EL1 or EL2 during cold boot - this is now
      fully determined by the SPSR value in the entry_point_info for BL3-3,
      as set up by the platform code in BL2 (or otherwise provided to BL3-1).
      
      In the situation that EL1 (or svc mode) is selected for a processor
      that supports EL2, the context management code will now configure all
      essential EL2 register state to ensure correct execution of EL1. This
      allows the platform code to run non-secure EL1 payloads directly
      without requiring a small EL2 stub or OS loader.
      
      Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
      167a9357
  13. 17 Jun, 2014 1 commit
    • Andrew Thoelke's avatar
      Remove early_exceptions from BL3-1 · ee94cc6f
      Andrew Thoelke authored
      The crash reporting support and early initialisation of the
      cpu_data allow the runtime_exception vectors to be used from
      the start in BL3-1, removing the need for the additional
      early_exception vectors and 2KB of code from BL3-1.
      
      Change-Id: I5f8997dabbaafd8935a7455910b7db174a25d871
      ee94cc6f
  14. 16 Jun, 2014 1 commit
    • Andrew Thoelke's avatar
      Per-cpu data cache restructuring · 5e910074
      Andrew Thoelke authored
      This patch prepares the per-cpu pointer cache for wider use by:
      * renaming the structure to cpu_data and placing in new header
      * providing accessors for this CPU, or other CPUs
      * splitting the initialization of the TPIDR pointer from the
        initialization of the cpu_data content
      * moving the crash stack initialization to a crash stack function
      * setting the TPIDR pointer very early during boot
      
      Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
      5e910074
  15. 11 Jun, 2014 1 commit
    • Andrew Thoelke's avatar
      Provide cm_get/set_context() for current CPU · 08ab89d3
      Andrew Thoelke authored
      All callers of cm_get_context() pass the calling CPU MPIDR to the
      function. Providing a specialised version for the current
      CPU results in a reduction in code size and better readability.
      
      The current function has been renamed to cm_get_context_by_mpidr()
      and the existing name is now used for the current-CPU version.
      
      The same treatment has been done to cm_set_context(), although
      only both forms are used at present in the PSCI and TSPD code.
      
      Change-Id: I91cb0c2f7bfcb950a045dbd9ff7595751c0c0ffb
      08ab89d3
  16. 10 Jun, 2014 1 commit
    • Andrew Thoelke's avatar
      PSCI SMC handler improvements · 5003ecab
      Andrew Thoelke authored
      The SMC handler for PSCI was not correctly handling calls from
      secure states, or from AArch32.
      
      This patch completes the handler implementation to correctly
      detect secure callers and to clear the top bits in parameters from
      AArch32 callers.
      
      The patch also reorganises the switch statement to separate SMC64 and
      SMC32 function IDs which allows the compiler to generate much smaller
      code for the function.
      
      Change-Id: I36b1ac81fb14253d257255d0477771d54fab0d11
      5003ecab
  17. 23 May, 2014 4 commits
    • Dan Handley's avatar
      Add enable mmu platform porting interfaces · dff8e47a
      Dan Handley authored
      Previously, the enable_mmu_elX() functions were implicitly part of
      the platform porting layer since they were included by generic
      code. These functions have been placed behind 2 new platform
      functions, bl31_plat_enable_mmu() and bl32_plat_enable_mmu().
      These are weakly defined so that they can be optionally overridden
      by platform ports.
      
      Also, the enable_mmu_elX() functions have been moved to
      lib/aarch64/xlat_tables.c for optional re-use by platform ports.
      These functions are tightly coupled with the translation table
      initialization code.
      
      Fixes ARM-software/tf-issues#152
      
      Change-Id: I0a2251ce76acfa3c27541f832a9efaa49135cc1c
      dff8e47a
    • Dan Handley's avatar
      Split platform.h into separate headers · 5f0cdb05
      Dan Handley authored
      Previously, platform.h contained many declarations and definitions
      used for different purposes. This file has been split so that:
      
      * Platform definitions used by common code that must be defined
        by the platform are now in platform_def.h. The exact include
        path is exported through $PLAT_INCLUDES in the platform makefile.
      
      * Platform definitions specific to the FVP platform are now in
        /plat/fvp/fvp_def.h.
      
      * Platform API declarations specific to the FVP platform are now
        in /plat/fvp/fvp_private.h.
      
      * The remaining platform API declarations that must be ported by
        each platform are still in platform.h but this file has been
        moved to /include/plat/common since this can be shared by all
        platforms.
      
      Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
      5f0cdb05
    • Dan Handley's avatar
      Remove unused data declarations · 7a9a5f2d
      Dan Handley authored
      Some data variables were declared but not used. These have been
      removed.
      
      Change-Id: I038632af3c32d88984cd25b886c43ff763269bf9
      7a9a5f2d
    • Dan Handley's avatar
      Remove extern keyword from function declarations · c6bc0710
      Dan Handley authored
      Function declarations implicitly have external linkage so do not
      need the extern keyword.
      
      Change-Id: Ia0549786796d8bf5956487e8996450a0b3d79f32
      c6bc0710
  18. 22 May, 2014 2 commits
    • Achin Gupta's avatar
      Introduce interrupt handling framework in BL3-1 · dce74b89
      Achin Gupta authored
      This patch adds a common handler for FIQ and IRQ exceptions in the
      BL3-1 runtime exception vector table. This function determines the
      interrupt type and calls its handler. A crash is reported if an
      inconsistency in the interrupt management framework is detected. In
      the event of a spurious interrupt, execution resumes from the
      instruction where the interrupt was generated.
      
      This patch also removes 'cm_macros.S' as its contents have been moved
      to 'runtime_exceptions.S'
      
      Change-Id: I3c85ecf8eaf43a3fac429b119ed0bd706d2e2093
      dce74b89
    • Vikram Kanigiri's avatar
      Introduce macros to manipulate the SPSR · 23ff9baa
      Vikram Kanigiri authored
      This patch introduces macros (SPSR_64 and SPSR_32) to
      create a SPSR for both aarch32 and aarch64 execution
      states. These macros allow the user to set fields
      in the SPSR depending upon its format.
      The make_spsr() function which did not allow
      manipulation of all the fields in the aarch32 SPSR
      has been replaced by these new macros.
      
      Change-Id: I9425dda0923e8d5f03d03ddb8fa0e28392c4c61e
      23ff9baa
  19. 16 May, 2014 1 commit
    • Soby Mathew's avatar
      Rework BL3-1 unhandled exception handling and reporting · a43d431b
      Soby Mathew authored
      This patch implements the register reporting when unhandled exceptions are
      taken in BL3-1. Unhandled exceptions will result in a dump of registers
      to the console, before halting execution by that CPU. The Crash Stack,
      previously called the Exception Stack, is used for this activity.
      This stack is used to preserve the CPU context and runtime stack
      contents for debugging and analysis.
      
      This also introduces the per_cpu_ptr_cache, referenced by tpidr_el3,
      to provide easy access to some of BL3-1 per-cpu data structures.
      Initially, this is used to provide a pointer to the Crash stack.
      
      panic() now prints the the error file and line number in Debug mode
      and prints the PC value in release mode.
      
      The Exception Stack is renamed to Crash Stack with this patch.
      The original intention of exception stack is no longer valid
      since we intend to support several valid exceptions like IRQ
      and FIQ in the trusted firmware context. This stack is now
      utilized for dumping and reporting the system state when a
      crash happens and hence the rename.
      
      Fixes ARM-software/tf-issues#79 Improve reporting of unhandled exception
      
      Change-Id: I260791dc05536b78547412d147193cdccae7811a
      a43d431b
  20. 12 May, 2014 1 commit
    • Achin Gupta's avatar
      Fix broken standby state implementation in PSCI · 317ba090
      Achin Gupta authored
      This patch fixes the broken support for entry into standby states
      introduced under commit-id 'd118f9f8' (tf-issues#94). Upon exit from
      the platform defined standby state instead of returning to the caller
      of the SMC, execution would get stuck in the wfi instruction meant for
      entering a power down state. This patch ensures that exit from a
      standby state and entry into a power down state do not interfere with
      each other.
      
      Fixes ARM-software/tf-issues#154
      
      Change-Id: I56e5df353368e44d6eefc94ffedefe21929f5cfe
      317ba090
  21. 09 May, 2014 1 commit
    • Sandrine Bailleux's avatar
      fvp: Provide per-EL MMU setup functions · b793e431
      Sandrine Bailleux authored
      Instead of having a single version of the MMU setup functions for all
      bootloader images that can execute either in EL3 or in EL1, provide
      separate functions for EL1 and EL3. Each bootloader image can then
      call the appropriate version of these functions. The aim is to reduce
      the amount of code compiled in each BL image by embedding only what's
      needed (e.g. BL1 to embed only EL3 variants).
      
      Change-Id: Ib86831d5450cf778ae78c9c1f7553fe91274c2fa
      b793e431
  22. 08 May, 2014 1 commit
    • Soby Mathew's avatar
      Preserve x19-x29 across world switch for exception handling · c3260f9b
      Soby Mathew authored
      Previously exception handlers in BL3-1, X19-X29 were not saved
      and restored on every SMC/trap into EL3. Instead these registers
      were 'saved as needed' as a side effect of the A64 ABI used by the C
      compiler.
      
      That approach failed when world switching but was not visible
      with the TSP/TSPD code because the TSP is 64-bit, did not
      clobber these registers when running and did not support pre-emption
      by normal world interrupts. These scenarios showed
      that the values in these registers can be passed through a world
      switch, which broke the normal and trusted world assumptions
      about these registers being preserved.
      
      The Ideal solution saves and restores these registers when a
      world switch occurs - but that type of implementation is more complex.
      So this patch always saves and restores these registers on entry and
      exit of EL3.
      
      Fixes ARM-software/tf-issues#141
      
      Change-Id: I9a727167bbc594454e81cf78a97ca899dfb11c27
      c3260f9b
  23. 07 May, 2014 2 commits
    • Andrew Thoelke's avatar
      Access system registers directly in assembler · 7935d0a5
      Andrew Thoelke authored
      Instead of using the system register helper functions to read
      or write system registers, assembler coded functions should
      use MRS/MSR instructions. This results in faster and more
      compact code.
      
      This change replaces all usage of the helper functions with
      direct register accesses.
      
      Change-Id: I791d5f11f257010bb3e6a72c6c5ab8779f1982b3
      7935d0a5
    • Andrew Thoelke's avatar
      Correct usage of data and instruction barriers · 8cec598b
      Andrew Thoelke authored
      The current code does not always use data and instruction
      barriers as required by the architecture and frequently uses
      barriers excessively due to their inclusion in all of the
      write_*() helper functions.
      
      Barriers should be used explicitly in assembler or C code
      when modifying processor state that requires the barriers in
      order to enable review of correctness of the code.
      
      This patch removes the barriers from the helper functions and
      introduces them as necessary elsewhere in the code.
      
      PORTING NOTE: check any port of Trusted Firmware for use of
      system register helper functions for reliance on the previous
      barrier behaviour and add explicit barriers as necessary.
      
      Fixes ARM-software/tf-issues#92
      
      Change-Id: Ie63e187404ff10e0bdcb39292dd9066cb84c53bf
      8cec598b
  24. 06 May, 2014 3 commits
    • Dan Handley's avatar
      Remove variables from .data section · 625de1d4
      Dan Handley authored
      Update code base to remove variables from the .data section,
      mainly by using const static data where possible and adding
      the const specifier as required. Most changes are to the IO
      subsystem, including the framework APIs. The FVP power
      management code is also affected.
      
      Delay initialization of the global static variable,
      next_image_type in bl31_main.c, until it is realy needed.
      Doing this moves the variable from the .data to the .bss
      section.
      
      Also review the IO interface for inconsistencies, using
      uintptr_t where possible instead of void *. Remove the
      io_handle and io_dev_handle typedefs, which were
      unnecessary, replacing instances with uintptr_t.
      
      Fixes ARM-software/tf-issues#107.
      
      Change-Id: I085a62197c82410b566e4698e5590063563ed304
      625de1d4
    • Dan Handley's avatar
      Reduce deep nesting of header files · 97043ac9
      Dan Handley authored
      Reduce the number of header files included from other header
      files as much as possible without splitting the files. Use forward
      declarations where possible. This allows removal of some unnecessary
      "#ifndef __ASSEMBLY__" statements.
      
      Also, review the .c and .S files for which header files really need
      including and reorder the #include statements alphabetically.
      
      Fixes ARM-software/tf-issues#31
      
      Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
      97043ac9
    • Dan Handley's avatar
      Always use named structs in header files · fb037bfb
      Dan Handley authored
      Add tag names to all unnamed structs in header files. This
      allows forward declaration of structs, which is necessary to
      reduce header file nesting (to be implemented in a subsequent
      commit).
      
      Also change the typedef names across the codebase to use the _t
      suffix to be more conformant with the Linux coding style. The
      coding style actually prefers us not to use typedefs at all but
      this is considered a step too far for Trusted Firmware.
      
      Also change the IO framework structs defintions to use typedef'd
      structs to be consistent with the rest of the codebase.
      
      Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
      fb037bfb