- 30 Jan, 2017 1 commit
-
-
Jeenu Viswambharan authored
The errata reporting policy is as follows: - If an errata workaround is enabled: - If it applies (i.e. the CPU is affected by the errata), an INFO message is printed, confirming that the errata workaround has been applied. - If it does not apply, a VERBOSE message is printed, confirming that the errata workaround has been skipped. - If an errata workaround is not enabled, but would have applied had it been, a WARN message is printed, alerting that errata workaround is missing. The CPU errata messages are printed by both BL1 (primary CPU only) and runtime firmware on debug builds, once for each CPU/errata combination. Relevant output from Juno r1 console when ARM Trusted Firmware is built with PLAT=juno LOG_LEVEL=50 DEBUG=1: VERBOSE: BL1: cortex_a57: errata workaround for 806969 was not applied VERBOSE: BL1: cortex_a57: errata workaround for 813420 was not applied INFO: BL1: cortex_a57: errata workaround for disable_ldnp_overread was applied WARNING: BL1: cortex_a57: errata workaround for 826974 was missing! WARNING: BL1: cortex_a57: errata workaround for 826977 was missing! WARNING: BL1: cortex_a57: errata workaround for 828024 was missing! WARNING: BL1: cortex_a57: errata workaround for 829520 was missing! WARNING: BL1: cortex_a57: errata workaround for 833471 was missing! ... VERBOSE: BL31: cortex_a57: errata workaround for 806969 was not applied VERBOSE: BL31: cortex_a57: errata workaround for 813420 was not applied INFO: BL31: cortex_a57: errata workaround for disable_ldnp_overread was applied WARNING: BL31: cortex_a57: errata workaround for 826974 was missing! WARNING: BL31: cortex_a57: errata workaround for 826977 was missing! WARNING: BL31: cortex_a57: errata workaround for 828024 was missing! WARNING: BL31: cortex_a57: errata workaround for 829520 was missing! WARNING: BL31: cortex_a57: errata workaround for 833471 was missing! ... VERBOSE: BL31: cortex_a53: errata workaround for 826319 was not applied INFO: BL31: cortex_a53: errata workaround for disable_non_temporal_hint was applied Also update documentation. Change-Id: Iccf059d3348adb876ca121cdf5207bdbbacf2aba Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 23 Jan, 2017 1 commit
-
-
Masahiro Yamada authored
One nasty part of ATF is some of boolean macros are always defined as 1 or 0, and the rest of them are only defined under certain conditions. For the former group, "#if FOO" or "#if !FOO" must be used because "#ifdef FOO" is always true. (Options passed by $(call add_define,) are the cases.) For the latter, "#ifdef FOO" or "#ifndef FOO" should be used because checking the value of an undefined macro is strange. Here, IMAGE_BL* is handled by make_helpers/build_macro.mk like follows: $(eval IMAGE := IMAGE_BL$(call uppercase,$(3))) $(OBJ): $(2) @echo " CC $$<" $$(Q)$$(CC) $$(TF_CFLAGS) $$(CFLAGS) -D$(IMAGE) -c $$< -o $$@ This means, IMAGE_BL* is defined when building the corresponding image, but *undefined* for the other images. So, IMAGE_BL* belongs to the latter group where we should use #ifdef or #ifndef. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 15 Dec, 2016 1 commit
-
-
Jeenu Viswambharan authored
Various CPU drivers in ARM Trusted Firmware register functions to handle power-down operations. At present, separate functions are registered to power down individual cores and clusters. This scheme operates on the basis of core and cluster, and doesn't cater for extending the hierarchy for power-down operations. For example, future CPUs might support multiple threads which might need powering down individually. This patch therefore reworks the CPU operations framework to allow for registering power down handlers on specific level basis. Henceforth: - Generic code invokes CPU power down operations by the level required. - CPU drivers explicitly mention CPU_NO_RESET_FUNC when the CPU has no reset function. - CPU drivers register power down handlers as a list: a mandatory handler for level 0, and optional handlers for higher levels. All existing CPU drivers are adapted to the new CPU operations framework without needing any functional changes within. Also update firmware design guide. Change-Id: I1826842d37a9e60a9e85fdcee7b4b8f6bc1ad043 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 21 Sep, 2016 2 commits
-
-
Yatharth Kochar authored
This patch adds ARM Cortex-A32 MPCore Processor support in the CPU specific operations framework. It also includes this support for the Base FVP port. Change-Id: If3697b88678df737c29f79cf3fa1ea2cb6fa565d
-
Yatharth Kochar authored
This patch adds common changes to support AArch32 state in BL1 and BL2. Following are the changes: * Added functions for disabling MMU from Secure state. * Added AArch32 specific SMC function. * Added semihosting support. * Added reporting of unhandled exceptions. * Added uniprocessor stack support. * Added `el3_entrypoint_common` macro that can be shared by BL1 and BL32 (SP_MIN) BL stages. The `el3_entrypoint_common` is similar to the AArch64 counterpart with the main difference in the assembly instructions and the registers that are relevant to AArch32 execution state. * Enabled `LOAD_IMAGE_V2` flag in Makefile for `ARCH=aarch32` and added check to make sure that platform has not overridden to disable it. Change-Id: I33c6d8dfefb2e5d142fdfd06a0f4a7332962e1a3
-
- 10 Aug, 2016 1 commit
-
-
Soby Mathew authored
This patch adds AArch32 support to cpu ops, context management, per-cpu data and spinlock libraries. The `entrypoint_info` structure is modified to add support for AArch32 register arguments. The CPU operations for AEM generic cpu in AArch32 mode is also added. Change-Id: I1e52e79f498661d8f31f1e7b3a29e222bc7a4483
-