- 23 Jan, 2015 6 commits
-
-
Soby Mathew authored
This patch adds support to return SUCCESS if a pending interrupt is detected during a CPU_SUSPEND call to a power down state. The check is performed as late as possible without losing the ability to return to the caller. This reduces the overhead incurred by a CPU in undergoing a complete power cycle when a wakeup interrupt is already pending. Fixes ARM-Software/tf-issues#102 Change-Id: I1aff04a74b704a2f529734428030d1d10750fd4b
-
Soby Mathew authored
This patch allows the platform to validate the power_state and entrypoint information from the normal world early on in PSCI calls so that we can return the error safely. New optional pm_ops hooks `validate_power_state` and `validate_ns_entrypoint` are introduced to do this. As a result of these changes, all the other pm_ops handlers except the PSCI_ON handler are expected to be successful. Also, the PSCI implementation will now assert if a PSCI API is invoked without the corresponding pm_ops handler being registered by the platform. NOTE : PLATFORM PORTS WILL BREAK ON MERGE OF THIS COMMIT. The pm hooks have 2 additional optional callbacks and the return type of the other hooks have changed. Fixes ARM-Software/tf-issues#229 Change-Id: I036bc0cff2349187c7b8b687b9ee0620aa7e24dc
-
Soby Mathew authored
This patch adds support to save the "power state" parameter before the affinity level specific handlers are called in a CPU_SUSPEND call. This avoids the need to pass the power_state as a parameter to the handlers and Secure Payload Dispatcher (SPD) suspend spd_pm_ops. The power_state arguments in the spd_pm_ops operations are now reserved and must not be used. The SPD can query the relevant power_state fields by using the psci_get_suspend_afflvl() & psci_get_suspend_stateid() APIs. NOTE: THIS PATCH WILL BREAK THE SPD_PM_OPS INTERFACE. HENCE THE SECURE PAYLOAD DISPATCHERS WILL NEED TO BE REWORKED TO USE THE NEW INTERFACE. Change-Id: I1293d7dc8cf29cfa6a086a009eee41bcbf2f238e
-
Soby Mathew authored
This patch replaces the internal psci_save_ns_entry() API with a psci_get_ns_ep_info() API. The new function splits the work done by the previous one such that it populates and returns an 'entry_point_info_t' structure with the information to enter the normal world upon completion of the CPU_SUSPEND or CPU_ON call. This information is used to populate the non-secure context structure separately. This allows the new internal API `psci_get_ns_ep_info` to return error and enable the code to return safely. Change-Id: Ifd87430a4a3168eac0ebac712f59c93cbad1b231
-
Soby Mathew authored
This patch moves the check for valid CPU state during PSCI_CPU_ON to before the non secure entry point is programmed so as to enable it to return early on error. Change-Id: I1b1a21be421e2b2a6e33db236e91dee8688efffa
-
Soby Mathew authored
This patch removes the non-secure entry point information being passed to the platform pm_ops which is not needed. Also, it removes the `mpidr` parameter for platform pm hooks which are meant to do power management operations only on the current cpu. NOTE: PLATFORM PORTS MUST BE UPDATED AFTER MERGING THIS COMMIT. Change-Id: If632376a990b7f3b355f910e78771884bf6b12e7
-
- 22 Jan, 2015 2 commits
-
-
Soby Mathew authored
This patch extends the build option `USE_COHERENT_MEMORY` to conditionally remove coherent memory from the memory maps of all boot loader stages. The patch also adds necessary documentation for coherent memory removal in firmware-design, porting and user guides. Fixes ARM-Software/tf-issues#106 Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
-
Soby Mathew authored
This patch moves the bakery locks out of coherent memory to normal memory. This implies that the lock information needs to be placed on a separate cache line for each cpu. Hence the bakery_lock_info_t structure is allocated in the per-cpu data so as to minimize memory wastage. A similar platform per-cpu data is introduced for the platform locks. As a result of the above changes, the bakery lock api is completely changed. Earlier, a reference to the lock structure was passed to the lock implementation. Now a unique-id (essentially an index into the per-cpu data array) and an offset into the per-cpu data for bakery_info_t needs to be passed to the lock implementation. Change-Id: I1e76216277448713c6c98b4c2de4fb54198b39e0
-
- 13 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch fixes a crash due to corruption of cpu_ops data structure. During the secondary CPU boot, after the cpu_ops has been initialized in the per cpu-data, the dcache lines need to invalidated so that the update in memory can be seen later on when the dcaches are turned ON. Also, after initializing the psci per cpu data, the dcache lines are flushed so that they are written back to memory and dirty dcache lines are avoided. Fixes ARM-Software/tf-issues#271 Change-Id: Ia90f55e9882690ead61226eea5a5a9146d35f313
-
- 12 Dec, 2014 1 commit
-
-
Soby Mathew authored
This patch fixes the assertion failure when CPU_SUSPEND is invoked with an affinity level higher than supported by the platform by adding suitable checks for affinity level within `psci_cpu_suspend`. Also added suitable bound checks within `psci_aff_map_get_idx` to prevent indexing beyond array limits. Fixes ARM-software/tf-issues#260 Change-Id: I04b75c49729e6c6d1983add590f60146c8fc3630
-
- 04 Dec, 2014 1 commit
-
-
Soby Mathew authored
This patch fixes the array size of mpidr_aff_map_nodes_t which was less by one element. Fixes ARM-software/tf-issues#264 Change-Id: I48264f6f9e7046a3d0f4cbcd63b9ba49657e8818
-
- 16 Sep, 2014 1 commit
-
-
Jens Wiklander authored
Adds a dispatcher for OP-TEE based on the test secure payload dispatcher. Fixes arm-software/tf-issues#239
-
- 20 Aug, 2014 1 commit
-
-
Soby Mathew authored
This patch adds CPU core and cluster power down sequences to the CPU specific operations framework introduced in a earlier patch. Cortex-A53, Cortex-A57 and generic AEM sequences have been added. The latter is suitable for the Foundation and Base AEM FVPs. A pointer to each CPU's operations structure is saved in the per-cpu data so that it can be easily accessed during power down seqeunces. An optional platform API has been introduced to allow a platform to disable the Accelerator Coherency Port (ACP) during a cluster power down sequence. The weak definition of this function (plat_disable_acp()) does not take any action. It should be overriden with a strong definition if the ACP is present on a platform. Change-Id: I8d09bd40d2f528a28d2d3f19b77101178778685d
-
- 19 Aug, 2014 6 commits
-
-
Achin Gupta authored
This patch implements the following cleanups in PSCI generic code: 1. It reworks the affinity level specific handlers in the PSCI implementation such that. a. Usage of the 'rc' local variable is restricted to only where it is absolutely needed b. 'plat_state' local variable is defined only when a direct invocation of plat_get_phys_state() does not suffice. c. If a platform handler is not registered then the level specific handler returns early. 2. It limits the use of the mpidr_aff_map_nodes_t typedef to declaration of arrays of the type instead of using it in function prototypes as well. 3. It removes dangling declarations of __psci_cpu_off() and __psci_cpu_suspend(). The definitions of these functions were removed in earlier patches. Change-Id: I51e851967c148be9c2eeda3a3c41878f7b4d6978
-
Achin Gupta authored
This patch adds APIs to find, save and retrieve the highest affinity level which will enter or exit from the physical OFF state during a PSCI power management operation. The level is stored in per-cpu data. It then reworks the PSCI implementation to perform cache maintenance only when the handler for the highest affinity level to enter/exit the OFF state is called. For example. during a CPU_SUSPEND operation, state management is done prior to calling the affinity level specific handlers. The highest affinity level which will be turned off is determined using the psci_find_max_phys_off_afflvl() API. This level is saved using the psci_set_max_phys_off_afflvl() API. In the code that does generic handling for each level, prior to performing cache maintenance it is first determined if the current affinity level matches the value returned by psci_get_max_phys_off_afflvl(). Cache maintenance is done if the values match. This change allows the last CPU in a cluster to perform cache maintenance independently. Earlier, cache maintenance was started in the level 0 handler and finished in the level 1 handler. This change in approach will facilitate implementation of tf-issues#98. Change-Id: I57233f0a27b3ddd6ddca6deb6a88b234525b0ae6
-
Achin Gupta authored
This patch pulls out state management from the affinity level specific handlers into the top level functions specific to the operation i.e. psci_afflvl_suspend(), psci_afflvl_on() etc. In the power down path this patch will allow an affinity instance at level X to determine the state that an affinity instance at level X+1 will enter before the level specific handlers are called. This will be useful to determine whether a CPU is the last in the cluster during a suspend/off request and so on. Similarly, in the power up path this patch will allow an affinity instance at level X to determine the state that an affinity instance at level X+1 has emerged from, even after the level specific handlers have been called. This will be useful in determining whether a CPU is the first in the cluster during a on/resume request and so on. As before, while powering down, state is updated before the level specific handlers are invoked so that they can perform actions based upon their target state. While powering up, state is updated after the level specific handlers have been invoked so that they can perform actions based upon the state they emerged from. Change-Id: I40fe64cb61bb096c66f88f6d493a1931243cfd37
-
Achin Gupta authored
This patch adds a structure defined by the PSCI service to the per-CPU data array. The structure is used to save the 'power_state' parameter specified during a 'cpu_suspend' call on the current CPU. This parameter was being saved in the cpu node in the PSCI topology tree earlier. The existing API to return the state id specified during a PSCI CPU_SUSPEND call i.e. psci_get_suspend_stateid(mpidr) has been renamed to psci_get_suspend_stateid_by_mpidr(mpidr). The new psci_get_suspend_stateid() API returns the state id of the current cpu. The psci_get_suspend_afflvl() API has been changed to return the target affinity level of the current CPU. This was specified using the 'mpidr' parameter in the old implementation. The behaviour of the get_power_on_target_afflvl() has been tweaked such that traversal of the PSCI topology tree to locate the affinity instance node for the current CPU is done only in the debug build as it is an expensive operation. Change-Id: Iaad49db75abda471f6a82d697ee6e0df554c4caf
-
Juan Castillo authored
This patch adds support for SYSTEM_OFF and SYSTEM_RESET PSCI operations. A platform should export handlers to complete the requested operation. The FVP port exports fvp_system_off() and fvp_system_reset() as an example. If the SPD provides a power management hook for system off and system reset, then the SPD is notified about the corresponding operation so it can do some bookkeeping. The TSPD exports tspd_system_off() and tspd_system_reset() for that purpose. Versatile Express shutdown and reset methods have been removed from the FDT as new PSCI sys_poweroff and sys_reset services have been added. For those kernels that do not support yet these PSCI services (i.e. GICv3 kernel), the original dtsi files have been renamed to *-no_psci.dtsi. Fixes ARM-software/tf-issues#218 Change-Id: Ic8a3bf801db979099ab7029162af041c4e8330c8
-
Dan Handley authored
* Move TSP platform porting functions to new file: include/bl32/tsp/platform_tsp.h. * Create new TSP_IRQ_SEC_PHY_TIMER definition for use by the generic TSP interrupt handling code, instead of depending on the FVP specific definition IRQ_SEC_PHY_TIMER. * Rename TSP platform porting functions from bl32_* to tsp_*, and definitions from BL32_* to TSP_*. * Update generic TSP code to use new platform porting function names and definitions. * Update FVP port accordingly and move all TSP source files to: plat/fvp/tsp/. * Update porting guide with above changes. Note: THIS CHANGE REQUIRES ALL PLATFORM PORTS OF THE TSP TO BE UPDATED Fixes ARM-software/tf-issues#167 Change-Id: Ic0ff8caf72aebb378d378193d2f017599fc6b78f
-
- 15 Aug, 2014 1 commit
-
-
Achin Gupta authored
This patch disables routing of external aborts from lower exception levels to EL3 and ensures that a SError interrupt generated as a result of execution in EL3 is taken locally instead of a lower exception level. The SError interrupt is enabled in the TSP code only when the operation has not been directly initiated by the normal world. This is to prevent the possibility of an asynchronous external abort which originated in normal world from being taken when execution is in S-EL1. Fixes ARM-software/tf-issues#153 Change-Id: I157b996c75996d12fd86d27e98bc73dd8bce6cd5
-
- 01 Aug, 2014 2 commits
-
-
Vikram Kanigiri authored
This patch adds support for BL3-2 initialization by asynchronous method where BL3-1 transfers control to BL3-2 using world switch. After BL3-2 initialization, it transfers control to BL3-3 via SPD service handler. The SPD service handler initializes the CPU context to BL3-3 entrypoint depending on the return function indentifier from TSP initialization. Fixes ARM-software/TF-issues#184 Change-Id: I7b135c2ceeb356d3bb5b6a287932e96ac67c7a34
-
Vikram Kanigiri authored
There is no mechanism which allows the TSPD to specify what SPSR to use when entering BL3-2 instead of BL3-3. This patch divides the responsibility between tspd_setup() and tspd_init() for initializing the TSPD and TSP to support the alternate BL3-2 initialization flow where BL3-1 handsover control to BL3-2 instead of BL3-3. SPSR generated by TSPD for TSP is preserved due the new division of labour which fixes #174. This patch also moves the cpu_context initialization code from tspd_setup() to tspd_init() immediately before entering the TSP. Instead tspd_setup() updates the BL3-2 entrypoint info structure with the state required for initializing the TSP later. Fixes ARM-software/TF-issues#174 Change-Id: Ida0a8a48d466c71d5b07b8c7f2af169b73f96940
-
- 31 Jul, 2014 1 commit
-
-
Soby Mathew authored
This patch further optimizes the EL3 register state stored in cpu_context. The 2 registers which are removed from cpu_context are: * cntfrq_el0 is the system timer register which is writable only in EL3 and it can be programmed during cold/warm boot. Hence it need not be saved to cpu_context. * cptr_el3 controls access to Trace, Floating-point, and Advanced SIMD functionality and it is programmed every time during cold and warm boot. The current BL3-1 implementation does not need to modify the access controls during normal execution and hence they are expected to remain static. Fixes ARM-software/tf-issues#197 Change-Id: I599ceee3b73a7dcfd37069fd41b60e3d397a7b18
-
- 28 Jul, 2014 3 commits
-
-
Juan Castillo authored
Assert a valid security state using the macro sec_state_is_valid(). Replace assert() with panic() in those cases that might arise because of runtime errors and not programming errors. Replace panic() with assert() in those cases that might arise because of programming errors. Fixes ARM-software/tf-issues#96 Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
-
Achin Gupta authored
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They do not have to be saved and restored either. The M, WXN and optionally the C bit are set in the enable_mmu_elX() function. This is done during both the warm and cold boot paths. Fixes ARM-software/tf-issues#226 Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
-
Achin Gupta authored
This patch removes the allocation of memory for coherent stacks, associated accessor function and some dead code which called the accessor function. It also updates the porting guide to remove the concept and the motivation behind using stacks allocated in coherent memory. Fixes ARM-software/tf-issues#198 Change-Id: I00ff9a04f693a03df3627ba39727e3497263fc38
-
- 19 Jul, 2014 2 commits
-
-
Achin Gupta authored
This patch uses stacks allocated in normal memory to enable the MMU early in the warm boot path thus removing the dependency on stacks allocated in coherent memory. Necessary cache and stack maintenance is performed when a cpu is being powered down and up. This avoids any coherency issues that can arise from reading speculatively fetched stale stack memory from another CPUs cache. These changes affect the warm boot path in both BL3-1 and BL3-2. The EL3 system registers responsible for preserving the MMU state are not saved and restored any longer. Static values are used to program these system registers when a cpu is powered on or resumed from suspend. Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
-
Achin Gupta authored
This patch adds a 'flags' parameter to each exception level specific function responsible for enabling the MMU. At present only a single flag which indicates whether the data cache should also be enabled is implemented. Subsequent patches will use this flag when enabling the MMU in the warm boot paths. Change-Id: I0eafae1e678c9ecc604e680851093f1680e9cefa
-
- 25 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Many of the interfaces internal to PSCI pass the current CPU MPIDR_EL1 value from function to function. This is not required, and with inline access to the system registers is less efficient than requiring the code to read that register whenever required. This patch remove the mpidr parameter from the affected interfaces and reduces code in FVP BL3-1 size by 160 bytes. Change-Id: I16120a7c6944de37232016d7e109976540775602
-
- 24 Jun, 2014 1 commit
-
-
Juan Castillo authored
Exclude stdlib files because they do not follow kernel code style. Fixes ARM-software/tf-issues#73 Change-Id: I4cfafa38ab436f5ab22c277cb38f884346a267ab
-
- 23 Jun, 2014 4 commits
-
-
Andrew Thoelke authored
The bakery lock code currently expects the calling code to pass the MPIDR_EL1 of the current CPU. This is not always done correctly. Also the change to provide inline access to system registers makes it more efficient for the bakery lock code to obtain the MPIDR_EL1 directly. This change removes the mpidr parameter from the bakery lock interface, and results in a code reduction of 160 bytes for the ARM FVP port. Fixes ARM-software/tf-issues#213 Change-Id: I7ec7bd117bcc9794a0d948990fcf3336a367d543
-
Andrew Thoelke authored
The array of affinity nodes is currently allocated for 32 entries with the PSCI_NUM_AFFS value defined in psci.h. This is not enough for large systems, and will substantially over allocate the array for small systems. This patch introduces an optional platform definition PLATFORM_NUM_AFFS to platform_def.h. If defined this value is used for PSCI_NUM_AFFS, otherwise a value of two times the number of CPU cores is used. The FVP port defines PLATFORM_NUM_AFFS to be 10 which saves nearly 1.5KB of memory. Fixes ARM-software/tf-issues#192 Change-Id: I68e30ac950de88cfbd02982ba882a18fb69c1445
-
Andrew Thoelke authored
psci_suspend_context is an array of cache-line aligned structures containing the single power_state integer per cpu. This array is the only structure indexed by the aff_map_node.data integer. This patch saves 2KB of BL3-1 memory by placing the CPU power_state value directly in the aff_map_node structure. As a result, this value is now never cached and the cache clean when writing the value is no longer required. Fixes ARM-software/tf-issues#195 Change-Id: Ib4c70c8f79eed295ea541e7827977a588a19ef9b
-
Andrew Thoelke authored
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI and SPDs into two functions: * The first uses entry_point_info to initialize the relevant cpu_context for first entry into a lower exception level on a CPU * The second populates the EL1 and EL2 system registers as needed from the cpu_context to ensure correct entry into the lower EL This patch alters the way that BL3-1 determines which exception level is used when first entering EL1 or EL2 during cold boot - this is now fully determined by the SPSR value in the entry_point_info for BL3-3, as set up by the platform code in BL2 (or otherwise provided to BL3-1). In the situation that EL1 (or svc mode) is selected for a processor that supports EL2, the context management code will now configure all essential EL2 register state to ensure correct execution of EL1. This allows the platform code to run non-secure EL1 payloads directly without requiring a small EL2 stub or OS loader. Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
-
- 17 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
The crash reporting support and early initialisation of the cpu_data allow the runtime_exception vectors to be used from the start in BL3-1, removing the need for the additional early_exception vectors and 2KB of code from BL3-1. Change-Id: I5f8997dabbaafd8935a7455910b7db174a25d871
-
- 16 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
This patch prepares the per-cpu pointer cache for wider use by: * renaming the structure to cpu_data and placing in new header * providing accessors for this CPU, or other CPUs * splitting the initialization of the TPIDR pointer from the initialization of the cpu_data content * moving the crash stack initialization to a crash stack function * setting the TPIDR pointer very early during boot Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
-
- 11 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
All callers of cm_get_context() pass the calling CPU MPIDR to the function. Providing a specialised version for the current CPU results in a reduction in code size and better readability. The current function has been renamed to cm_get_context_by_mpidr() and the existing name is now used for the current-CPU version. The same treatment has been done to cm_set_context(), although only both forms are used at present in the PSCI and TSPD code. Change-Id: I91cb0c2f7bfcb950a045dbd9ff7595751c0c0ffb
-
- 10 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
The SMC handler for PSCI was not correctly handling calls from secure states, or from AArch32. This patch completes the handler implementation to correctly detect secure callers and to clear the top bits in parameters from AArch32 callers. The patch also reorganises the switch statement to separate SMC64 and SMC32 function IDs which allows the compiler to generate much smaller code for the function. Change-Id: I36b1ac81fb14253d257255d0477771d54fab0d11
-
- 29 May, 2014 1 commit
-
-
Soby Mathew authored
This patch fixes the compilation issue for trusted firmware when the IMF_READ_INTERRUPT_ID is enabled. Change-Id: I94ab613b9bc96a7c1935796c674dc42246aaafee
-
- 27 May, 2014 1 commit
-
-
Dan Handley authored
Rename the ic_* platform porting functions to plat_ic_* to be consistent with the other functions in platform.h. Also rename bl31_get_next_image_info() to bl31_plat_get_next_image_ep_info() and remove the duplicate declaration in bl31.h. Change-Id: I4851842069d3cff14c0a468daacc0a891a7ede84
-