- 01 Aug, 2014 2 commits
-
-
Vikram Kanigiri authored
This patch adds support for BL3-2 initialization by asynchronous method where BL3-1 transfers control to BL3-2 using world switch. After BL3-2 initialization, it transfers control to BL3-3 via SPD service handler. The SPD service handler initializes the CPU context to BL3-3 entrypoint depending on the return function indentifier from TSP initialization. Fixes ARM-software/TF-issues#184 Change-Id: I7b135c2ceeb356d3bb5b6a287932e96ac67c7a34
-
Juan Castillo authored
The purpose of platform_is_primary_cpu() is to determine after reset (BL1 or BL3-1 with reset handler) if the current CPU must follow the cold boot path (primary CPU), or wait in a safe state (secondary CPU) until the primary CPU has finished the system initialization. This patch removes redundant calls to platform_is_primary_cpu() in subsequent bootloader entrypoints since the reset handler already guarantees that code is executed exclusively on the primary CPU. Additionally, this patch removes the weak definition of platform_is_primary_cpu(), so the implementation of this function becomes mandatory. Removing the weak symbol avoids other bootloaders accidentally picking up an invalid definition in case the porting layer makes the real function available only to BL1. The define PRIMARY_CPU is no longer mandatory in the platform porting because platform_is_primary_cpu() hides the implementation details (for instance, there may be platforms that report the primary CPU in a system register). The primary CPU definition in FVP has been moved to fvp_def.h. The porting guide has been updated accordingly. Fixes ARM-software/tf-issues#219 Change-Id: If675a1de8e8d25122b7fef147cb238d939f90b5e
-
- 31 Jul, 2014 1 commit
-
-
Soby Mathew authored
This patch further optimizes the EL3 register state stored in cpu_context. The 2 registers which are removed from cpu_context are: * cntfrq_el0 is the system timer register which is writable only in EL3 and it can be programmed during cold/warm boot. Hence it need not be saved to cpu_context. * cptr_el3 controls access to Trace, Floating-point, and Advanced SIMD functionality and it is programmed every time during cold and warm boot. The current BL3-1 implementation does not need to modify the access controls during normal execution and hence they are expected to remain static. Fixes ARM-software/tf-issues#197 Change-Id: I599ceee3b73a7dcfd37069fd41b60e3d397a7b18
-
- 28 Jul, 2014 4 commits
-
-
Juan Castillo authored
Assert a valid security state using the macro sec_state_is_valid(). Replace assert() with panic() in those cases that might arise because of runtime errors and not programming errors. Replace panic() with assert() in those cases that might arise because of programming errors. Fixes ARM-software/tf-issues#96 Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
-
Soby Mathew authored
This patch adds the CPUECTLR_EL1 register and the CCI Snoop Control register to the list of registers being reported when an unhandled exception occurs. Change-Id: I2d997f2d6ef3d7fa1fad5efe3364dc9058f9f22c
-
Soby Mathew authored
This patch reworks the crash reporting mechanism to further optimise the stack and code size. The reporting makes use of assembly console functions to avoid calling C Runtime to report the CPU state. The crash buffer requirement is reduced to 64 bytes with this implementation. The crash buffer is now part of per-cpu data which makes retrieving the crash buffer trivial. Also now panic() will use crash reporting if invoked from BL3-1. Fixes ARM-software/tf-issues#199 Change-Id: I79d27a4524583d723483165dc40801f45e627da5
-
Achin Gupta authored
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They do not have to be saved and restored either. The M, WXN and optionally the C bit are set in the enable_mmu_elX() function. This is done during both the warm and cold boot paths. Fixes ARM-software/tf-issues#226 Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
-
- 25 Jul, 2014 2 commits
-
-
Juan Castillo authored
Print out Trusted Firmware version at runtime at each BL stage. Message consists of TF version as defined statically in the Makefile (e.g. v0.4), build mode (debug|release) and a customizable build string: 1. By defining BUILD_STRING in command line when building TF 2. Default string is git commit ID 3. Empty if git meta-data is not available Fixes ARM-software/tf-issues#203 Change-Id: I5c5ba438f66ab68810427d76b49c5b9177a957d6
-
Soby Mathew authored
This patch implements a "tf_printf" which supports only the commonly used format specifiers in Trusted Firmware, which uses a lot less stack space than the stdlib printf function. Fixes ARM-software/tf-issues#116 Change-Id: I7dfa1944f4c1e634b3e2d571f49afe02d109a351
-
- 19 Jul, 2014 2 commits
-
-
Achin Gupta authored
This patch uses stacks allocated in normal memory to enable the MMU early in the warm boot path thus removing the dependency on stacks allocated in coherent memory. Necessary cache and stack maintenance is performed when a cpu is being powered down and up. This avoids any coherency issues that can arise from reading speculatively fetched stale stack memory from another CPUs cache. These changes affect the warm boot path in both BL3-1 and BL3-2. The EL3 system registers responsible for preserving the MMU state are not saved and restored any longer. Static values are used to program these system registers when a cpu is powered on or resumed from suspend. Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
-
Achin Gupta authored
This patch reworks the cold boot path across the BL1, BL2, BL3-1 and BL3-2 boot loader stages to not use stacks allocated in coherent memory for early platform setup and enabling the MMU. Stacks allocated in normal memory are used instead. Attributes for stack memory change from nGnRnE when the MMU is disabled to Normal WBWA Inner-shareable when the MMU and data cache are enabled. It is possible for the CPU to read stale stack memory after the MMU is enabled from another CPUs cache. Hence, it is unsafe to turn on the MMU and data cache while using normal stacks when multiple CPUs are a part of the same coherency domain. It is safe to do so in the cold boot path as only the primary cpu executes it. The secondary cpus are in a quiescent state. This patch does not remove the allocation of coherent stack memory. That is done in a subsequent patch. Change-Id: I12c80b7c7ab23506d425c5b3a8a7de693498f830
-
- 10 Jul, 2014 2 commits
-
-
Sandrine Bailleux authored
This patch re-organizes the memory layout on FVP as to give the BL3-2 image as much memory as possible. Considering these two facts: - not all images need to live in memory at the same time. Once in BL3-1, the memory used by BL1 and BL2 can be reclaimed. - when BL2 loads the BL3-1 and BL3-2 images, it only considers the PROGBITS sections of those 2 images. The memory occupied by the NOBITS sections will be touched only at execution of the BL3-x images; Then it is possible to choose the different base addresses such that the NOBITS sections of BL3-1 and BL3-2 overlay BL1 and BL2. On FVP we choose to put: - BL1 and BL3-1 at the top of the Trusted RAM, with BL3-1 NOBITS sections overlaying BL1; - BL3-2 at the bottom of the Trusted RAM, with its NOBITS sections overlaying BL2; This is illustrated by the following diagram: 0x0404_0000 ------------ ------------------ | BL1 | <= | BL3-1 NOBITS | ------------ <= ------------------ | | <= | BL3-1 PROGBITS | ------------ ------------------ | BL2 | <= | BL3-2 NOBITS | ------------ <= ------------------ | | <= | BL3-2 PROGBITS | 0x0400_0000 ------------ ------------------ New platform-specific constants have been introduced to easily check at link time that BL3-1 and BL3-2 PROGBITS sections don't overwrite BL1 and BL2. These are optional and the platform code is free to define them or not. If not defined, the linker won't attempt to check image overlaying. Fixes ARM-software/tf-issues#117 Change-Id: I5981d1c3d66ee70eaac8bd052630c9ac6dd8b042
-
Juan Castillo authored
CTX_INCLUDE_FPREGS make variable allows us to include or exclude FP registers from context structure, in case FP is not used by TSPD. Fixes ARM-software/tf-issues#194 Change-Id: Iee41af382d691340c7ae21830ad1bbf95dad1f4b
-
- 24 Jun, 2014 2 commits
-
-
Juan Castillo authored
Exclude stdlib files because they do not follow kernel code style. Fixes ARM-software/tf-issues#73 Change-Id: I4cfafa38ab436f5ab22c277cb38f884346a267ab
-
Vikram Kanigiri authored
This patch reworks FVP specific code responsible for determining the entry point information for BL3-2 and BL3-3 stages when BL3-1 is configured as the reset handler. Change-Id: Ia661ff0a6a44c7aabb0b6c1684b2e8d3642d11ec
-
- 23 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI and SPDs into two functions: * The first uses entry_point_info to initialize the relevant cpu_context for first entry into a lower exception level on a CPU * The second populates the EL1 and EL2 system registers as needed from the cpu_context to ensure correct entry into the lower EL This patch alters the way that BL3-1 determines which exception level is used when first entering EL1 or EL2 during cold boot - this is now fully determined by the SPSR value in the entry_point_info for BL3-3, as set up by the platform code in BL2 (or otherwise provided to BL3-1). In the situation that EL1 (or svc mode) is selected for a processor that supports EL2, the context management code will now configure all essential EL2 register state to ensure correct execution of EL1. This allows the platform code to run non-secure EL1 payloads directly without requiring a small EL2 stub or OS loader. Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
-
- 17 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
The crash reporting support and early initialisation of the cpu_data allow the runtime_exception vectors to be used from the start in BL3-1, removing the need for the additional early_exception vectors and 2KB of code from BL3-1. Change-Id: I5f8997dabbaafd8935a7455910b7db174a25d871
-
- 16 Jun, 2014 2 commits
-
-
Andrew Thoelke authored
Moving the context pointers for each CPU into the per-cpu data allows for much more efficient access to the contexts for the current CPU. Change-Id: Id784e210d63cbdcddb44ac1591617ce668dbc29f
-
Andrew Thoelke authored
This patch prepares the per-cpu pointer cache for wider use by: * renaming the structure to cpu_data and placing in new header * providing accessors for this CPU, or other CPUs * splitting the initialization of the TPIDR pointer from the initialization of the cpu_data content * moving the crash stack initialization to a crash stack function * setting the TPIDR pointer very early during boot Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
-
- 11 Jun, 2014 2 commits
-
-
Andrew Thoelke authored
This patch makes the console crash dump of processor register state optional based on the CRASH_REPORTING make variable. This defaults to only being enabled for DEBUG builds. This can be overridden by setting a different value in the platform makefile or on the make command line. Change-Id: Icfa1b2d7ff0145cf0a85e8ad732f9cee7e7e993f
-
Andrew Thoelke authored
All callers of cm_get_context() pass the calling CPU MPIDR to the function. Providing a specialised version for the current CPU results in a reduction in code size and better readability. The current function has been renamed to cm_get_context_by_mpidr() and the existing name is now used for the current-CPU version. The same treatment has been done to cm_set_context(), although only both forms are used at present in the PSCI and TSPD code. Change-Id: I91cb0c2f7bfcb950a045dbd9ff7595751c0c0ffb
-
- 05 Jun, 2014 1 commit
-
-
Sandrine Bailleux authored
'crash_reporting.S' needs to include 'platform_def.h' to get the definition of PLATFORM_CORE_COUNT. Note: On FVP it was compiling because 'platform_def.h' gets included through 'plat/fvp/include/plat_macros.S' but we don't want to rely on that for other platforms. Change-Id: I51e974776dd0f3bda10ad9849f5ef7b30c629833
-
- 29 May, 2014 2 commits
-
-
Soby Mathew authored
This patch fixes the compilation issue for trusted firmware when the IMF_READ_INTERRUPT_ID is enabled. Change-Id: I94ab613b9bc96a7c1935796c674dc42246aaafee
-
Soby Mathew authored
The interrupt handling routine in BL3-1 expects a cookie as its last parameter which was not being passed when invoking the interrupt handler in BL3-1. This patch fixes that by passing a dummy cookie parameter in the x3 register. Fixes ARM-software/tf-issues#171 Change-Id: Ic98abbbd9f849e6f1c55343e865b5e0a4904a1c5
-
- 28 May, 2014 1 commit
-
-
Vikram Kanigiri authored
At present the arguments for BL3-3 in the entry_point_info structure are not being transferred to X0-X7 before starting execution of this image This patch saves the args for BL3-3 into cpu context used for its entry Fixes ARM-software/tf-issues#172 Change-Id: I001b4b9bff6a264336f0d01d377619ae719f928b
-
- 27 May, 2014 1 commit
-
-
Dan Handley authored
Rename the ic_* platform porting functions to plat_ic_* to be consistent with the other functions in platform.h. Also rename bl31_get_next_image_info() to bl31_plat_get_next_image_ep_info() and remove the duplicate declaration in bl31.h. Change-Id: I4851842069d3cff14c0a468daacc0a891a7ede84
-
- 23 May, 2014 4 commits
-
-
Dan Handley authored
Some platform porting functions were in BL specific header files. These have been moved to platform.h so that all porting functions are in the same place. The functions are now grouped by BL. Obsolete BL headers files have been removed. Also, the weak declaration of the init_bl2_mem_layout() function has been moved out the header file and into the source file (bl_common.c) using the more succinct #pragma syntax. This mitigates the risk of 2 weak definitions being created and the wrong one being picked up by the compiler. Change-Id: Ib19934939fd755f3e5a5a5bceec88da684308a83
-
Dan Handley authored
Previously, platform.h contained many declarations and definitions used for different purposes. This file has been split so that: * Platform definitions used by common code that must be defined by the platform are now in platform_def.h. The exact include path is exported through $PLAT_INCLUDES in the platform makefile. * Platform definitions specific to the FVP platform are now in /plat/fvp/fvp_def.h. * Platform API declarations specific to the FVP platform are now in /plat/fvp/fvp_private.h. * The remaining platform API declarations that must be ported by each platform are still in platform.h but this file has been moved to /include/plat/common since this can be shared by all platforms. Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
-
Sandrine Bailleux authored
Currently the platform code gets to define the base address of each boot loader image. However, the linker scripts couteract this flexibility by enforcing a fixed overall layout of the different images. For example, they require that the BL3-1 image sits below the BL2 image. Choosing BL3-1 and BL2 base addresses in such a way that it violates this constraint makes the build fail at link-time. This patch requires the platform code to now define a limit address for each image. The linker scripts check that the image fits within these bounds so they don't rely anymore on the position of a given image in regard to the others. Fixes ARM-software/tf-issues#163 Change-Id: I8c108646825da19a6a8dfb091b613e1dd4ae133c
-
Soby Mathew authored
Implements support for Non Secure Interrupts preempting the Standard SMC call in EL1. Whenever an IRQ is trapped in the Secure world we securely handover to the Normal world to process the interrupt. The normal world then issues "resume" smc call to resume the previous interrupted SMC call. Fixes ARM-software/tf-issues#105 Change-Id: I72b760617dee27438754cdfc9fe9bcf4cc024858
-
- 22 May, 2014 7 commits
-
-
Achin Gupta authored
This patch adds a common handler for FIQ and IRQ exceptions in the BL3-1 runtime exception vector table. This function determines the interrupt type and calls its handler. A crash is reported if an inconsistency in the interrupt management framework is detected. In the event of a spurious interrupt, execution resumes from the instruction where the interrupt was generated. This patch also removes 'cm_macros.S' as its contents have been moved to 'runtime_exceptions.S' Change-Id: I3c85ecf8eaf43a3fac429b119ed0bd706d2e2093
-
Achin Gupta authored
This patch introduces a framework for registering interrupts routed to EL3. The interrupt routing model is governed by the SCR_EL3.IRQ and FIQ bits and the security state an interrupt is generated in. The framework recognizes three type of interrupts depending upon which exception level and security state they should be handled in i.e. Secure EL1 interrupts, Non-secure interrupts and EL3 interrupts. It provides an API and macros that allow a runtime service to register an handler for a type of interrupt and specify the routing model. The framework validates the routing model and uses the context management framework to ensure that it is applied to the SCR_EL3 prior to entry into the target security state. It saves the handler in internal data structures. An API is provided to retrieve the handler when an interrupt of a particular type is asserted. Registration is expected to be done once by the primary CPU. The same handler and routing model is used for all CPUs. Support for EL3 interrupts will be added to the framework in the future. A makefile flag has been added to allow the FVP port choose between ARM GIC v2 and v3 support in EL3. The latter version is currently unsupported. A framework for handling interrupts in BL3-1 will be introduced in subsequent patches. The default routing model in the absence of any handlers expects no interrupts to be routed to EL3. Change-Id: Idf7c023b34fcd4800a5980f2bef85e4b5c29e649
-
Achin Gupta authored
This patch adds an API to write to any bit in the SCR_EL3 member of the 'cpu_context' structure of the current CPU for a specified security state. This API will be used in subsequent patches which introduce interrupt management in EL3 to specify the interrupt routing model when execution is not in EL3. It also renames the cm_set_el3_elr() function to cm_set_elr_el3() which is more in line with the system register name being targeted by the API. Change-Id: I310fa7d8f827ad3f350325eca2fb28cb350a85ed
-
Vikram Kanigiri authored
This change adds optional reset vector support to BL3-1 which means BL3-1 entry point can detect cold/warm boot, initialise primary cpu, set up cci and mail box. When using BL3-1 as a reset vector it is assumed that the BL3-1 platform code can determine the location of the BL3-2 images, or load them as there are no parameters that can be passed to BL3-1 at reset. It also fixes the incorrect initialisation of mailbox registers on the FVP platform This feature can be enabled by building the code with make variable RESET_TO_BL31 set as 1 Fixes ARM-software/TF-issues#133 Fixes ARM-software/TF-issues#20 Change-Id: I4e23939b1c518614b899f549f1e8d412538ee570
-
Vikram Kanigiri authored
The issues addressed in this patch are: 1. Remove meminfo_t from the common interfaces in BL3-x, expecting that platform code will find a suitable mechanism to determine the memory extents in these images and provide it to the BL3-x images. 2. Remove meminfo_t and bl31_plat_params_t from all FVP BL3-x code as the images use link-time information to determine memory extents. meminfo_t is still used by common interface in BL1/BL2 for loading images Change-Id: I4e825ebf6f515b59d84dc2bdddf6edbf15e2d60f
-
Vikram Kanigiri authored
This patch is based on spec published at https://github.com/ARM-software/tf-issues/issues/133 It rearranges the bl31_args struct into bl31_params and bl31_plat_params which provide the information needed for Trusted firmware and platform specific data via x0 and x1 On the FVP platform BL3-1 params and BL3-1 plat params and its constituents are stored at the start of TZDRAM. The information about memory availability and size for BL3-1, BL3-2 and BL3-3 is moved into platform specific data. Change-Id: I8b32057a3d0dd3968ea26c2541a0714177820da9
-
Vikram Kanigiri authored
This patch reworks the handover interface from: BL1 to BL2 and BL2 to BL3-1. It removes the raise_el(), change_el(), drop_el() and run_image() functions as they catered for code paths that were never exercised. BL1 calls bl1_run_bl2() to jump into BL2 instead of doing the same by calling run_image(). Similarly, BL2 issues the SMC to transfer execution to BL3-1 through BL1 directly. Only x0 and x1 are used to pass arguments to BL31. These arguments and parameters for running BL3-1 are passed through a reference to a 'el_change_info_t' structure. They were being passed value in general purpose registers earlier. Change-Id: Id4fd019a19a9595de063766d4a66295a2c9307e1
-
- 16 May, 2014 3 commits
-
-
Jeenu Viswambharan authored
At present, non-secure timer register contents are saved and restored as part of world switch by BL3-1. This effectively means that the non-secure timer stops, and non-secure timer interrupts are prevented from asserting until BL3-1 switches back, introducing latency for non-secure services. Often, secure world might depend on alternate sources for secure interrupts (secure timer or platform timer) instead of non-secure timers, in which case this save and restore is unnecessary. This patch introduces a boolean build-time configuration NS_TIMER_SWITCH to choose whether or not to save and restore non-secure timer registers upon world switch. The default choice is made not to save and restore them. Fixes ARM-software/tf-issues#148 Change-Id: I1b9d623606acb9797c3e0b02fb5ec7c0a414f37e
-
Andrew Thoelke authored
SCR_EL3.RW was not updated immediately before exiting bl31_main() and running BL3-3. If a AArch32 Secure-EL1 Payload had just been initialised, then the SCR_EL3.RW bit would be left indicating a 32-bit BL3-3, which may not be correct. This patch explicitly sets SCR_EL3.RW appropriately based on the provided SPSR_EL3 value for the BL3-3 image. Fixes ARM-software/tf-issues#126 Change-Id: Ic7716fe8bc87e577c4bfaeb46702e88deedd9895
-
Soby Mathew authored
This patch implements the register reporting when unhandled exceptions are taken in BL3-1. Unhandled exceptions will result in a dump of registers to the console, before halting execution by that CPU. The Crash Stack, previously called the Exception Stack, is used for this activity. This stack is used to preserve the CPU context and runtime stack contents for debugging and analysis. This also introduces the per_cpu_ptr_cache, referenced by tpidr_el3, to provide easy access to some of BL3-1 per-cpu data structures. Initially, this is used to provide a pointer to the Crash stack. panic() now prints the the error file and line number in Debug mode and prints the PC value in release mode. The Exception Stack is renamed to Crash Stack with this patch. The original intention of exception stack is no longer valid since we intend to support several valid exceptions like IRQ and FIQ in the trusted firmware context. This stack is now utilized for dumping and reporting the system state when a crash happens and hence the rename. Fixes ARM-software/tf-issues#79 Improve reporting of unhandled exception Change-Id: I260791dc05536b78547412d147193cdccae7811a
-