- 15 Sep, 2016 1 commit
-
-
Jeenu Viswambharan authored
This patch adds support for NODE_HW_STATE PSCI API by introducing a new PSCI platform hook (get_node_hw_state). The implementation validates supplied arguments, and then invokes this platform-defined hook and returns its result to the caller. PSCI capabilities are updated accordingly. Also updates porting and firmware design guides. Change-Id: I808e55bdf0c157002a7c104b875779fe50a68a30
-
- 10 Aug, 2016 1 commit
-
-
Soby Mathew authored
This patch adds AArch32 support to PSCI library, as follows : * The `psci_helpers.S` is implemented for AArch32. * AArch32 version of internal helper function `psci_get_ns_ep_info()` is defined. * The PSCI Library is responsible for the Non Secure context initialization. Hence a library interface `psci_prepare_next_non_secure_ctx()` is introduced to enable EL3 runtime firmware to initialize the non secure context without invoking context management library APIs. Change-Id: I25595b0cc2dbfdf39dbf7c589b875cba33317b9d
-
- 19 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch introduces the PSCI Library interface. The major changes introduced are as follows: * Earlier BL31 was responsible for Architectural initialization during cold boot via bl31_arch_setup() whereas PSCI was responsible for the same during warm boot. This functionality is now consolidated by the PSCI library and it does Architectural initialization via psci_arch_setup() during both cold and warm boots. * Earlier the warm boot entry point was always `psci_entrypoint()`. This was not flexible enough as a library interface. Now PSCI expects the runtime firmware to provide the entry point via `psci_setup()`. A new function `bl31_warm_entrypoint` is introduced in BL31 and the previous `psci_entrypoint()` is deprecated. * The `smc_helpers.h` is reorganized to separate the SMC Calling Convention defines from the Trusted Firmware SMC helpers. The former is now in a new header file `smcc.h` and the SMC helpers are moved to Architecture specific header. * The CPU context is used by PSCI for context initialization and restoration after power down (PSCI Context). It is also used by BL31 for SMC handling and context management during Normal-Secure world switch (SMC Context). The `psci_smc_handler()` interface is redefined to not use SMC helper macros thus enabling to decouple the PSCI context from EL3 runtime firmware SMC context. This enables PSCI to be integrated with other runtime firmware using a different SMC context. NOTE: With this patch the architectural setup done in `bl31_arch_setup()` is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be invoked prior to architectural setup. It is highly unlikely that the platform setup will depend on architectural setup and cause any failure. Please be be aware of this change in sequence. Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
-
- 18 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
-
- 16 Jun, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds following optional PSCI STAT functions: - PSCI_STAT_RESIDENCY: This call returns the amount of time spent in power_state in microseconds, by the node represented by the `target_cpu` and the highest level of `power_state`. - PSCI_STAT_COUNT: This call returns the number of times a `power_state` has been used by the node represented by the `target_cpu` and the highest power level of `power_state`. These APIs provides residency statistics for power states that has been used by the platform. They are implemented according to v1.0 of the PSCI specification. By default this optional feature is disabled in the PSCI implementation. To enable it, set the boolean flag `ENABLE_PSCI_STAT` to 1. This also sets `ENABLE_PMF` to 1. Change-Id: Ie62e9d37d6d416ccb1813acd7f616d1ddd3e8aff
-
- 14 Sep, 2015 1 commit
-
-
Achin Gupta authored
On the ARMv8 architecture, cache maintenance operations by set/way on the last level of integrated cache do not affect the system cache. This means that such a flush or clean operation could result in the data being pushed out to the system cache rather than main memory. Another CPU could access this data before it enables its data cache or MMU. Such accesses could be serviced from the main memory instead of the system cache. If the data in the sysem cache has not yet been flushed or evicted to main memory then there could be a loss of coherency. The only mechanism to guarantee that the main memory will be updated is to use cache maintenance operations to the PoC by MVA(See section D3.4.11 (System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G). This patch removes the reliance of Trusted Firmware on the flush by set/way operation to ensure visibility of data in the main memory. Cache maintenance operations by MVA are now used instead. The following are the broad category of changes: 1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is initialised. This ensures that any stale cache lines at any level of cache are removed. 2. Updates to global data in runtime firmware (BL31) by the primary CPU are made visible to secondary CPUs using a cache clean operation by MVA. 3. Cache maintenance by set/way operations are only used prior to power down. NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES. Fixes ARM-software/tf-issues#205 Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
-
- 11 Sep, 2015 1 commit
-
-
Andrew Thoelke authored
This patch unifies the bakery lock api's across coherent and normal memory implementation of locks by using same data type `bakery_lock_t` and similar arguments to functions. A separate section `bakery_lock` has been created and used to allocate memory for bakery locks using `DEFINE_BAKERY_LOCK`. When locks are allocated in normal memory, each lock for a core has to spread across multiple cache lines. By using the total size allocated in a separate cache line for a single core at compile time, the memory for other core locks is allocated at link time by multiplying the single core locks size with (PLATFORM_CORE_COUNT - 1). The normal memory lock algorithm now uses lock address instead of the `id` in the per_cpu_data. For locks allocated in coherent memory, it moves locks from tzfw_coherent_memory to bakery_lock section. The bakery locks are allocated as part of bss or in coherent memory depending on usage of coherent memory. Both these regions are initialised to zero as part of run_time_init before locks are used. Hence, bakery_lock_init() is made an empty function as the lock memory is already initialised to zero. The above design lead to the removal of psci bakery locks from non_cpu_power_pd_node to psci_locks. NOTE: THE BAKERY LOCK API WHEN USE_COHERENT_MEM IS NOT SET HAS CHANGED. THIS IS A BREAKING CHANGE FOR ALL PLATFORM PORTS THAT ALLOCATE BAKERY LOCKS IN NORMAL MEMORY. Change-Id: Ic3751c0066b8032dcbf9d88f1d4dc73d15f61d8b
-
- 13 Aug, 2015 2 commits
-
-
Soby Mathew authored
This patch reworks the PSCI generic implementation to conform to ARM Trusted Firmware coding guidelines as described here: https://github.com/ARM-software/arm-trusted-firmware/wiki This patch also reviews the use of signed data types within PSCI Generic code and replaces them with their unsigned counterparts wherever they are not appropriate. The PSCI_INVALID_DATA macro which was defined to -1 is now replaced with PSCI_INVALID_PWR_LVL macro which is defined to PLAT_MAX_PWR_LVL + 1. Change-Id: Iaea422d0e46fc314e0b173c2b4c16e0d56b2515a
-
Soby Mathew authored
This commit does the switch to the new PSCI framework implementation replacing the existing files in PSCI folder with the ones in PSCI1.0 folder. The corresponding makefiles are modified as required for the new implementation. The platform.h header file is also is switched to the new one as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults to 1 to enable compatibility layer which let the existing platform ports to continue to build and run with minimal changes. The default weak implementation of platform_get_core_pos() is now removed from platform_helpers.S and is provided by the compatibility layer. Note: The Secure Payloads and their dispatchers still use the old platform and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build flag will remain enabled in subsequent patch. The compatibility for SPDs using the older APIs on platforms migrated to the new APIs will be added in the following patch. Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
-
- 22 Jun, 2015 1 commit
-
-
Soby Mathew authored
This patch adds support for SYSTEM_SUSPEND API as mentioned in the PSCI 1.0 specification. This API, on being invoked on the last running core on a supported platform, will put the system into a low power mode with memory retention. The psci_afflvl_suspend() internal API has been reused as most of the actions to suspend a system are the same as invoking the PSCI CPU_SUSPEND API with the target affinity level as 'system'. This API needs the 'power state' parameter for the target low power state. This parameter is not passed by the caller of the SYSTEM_SUSPEND API. Hence, the platform needs to implement the get_sys_suspend_power_state() platform function to provide this information. Also, the platform also needs to add support for suspending the system to the existing 'plat_pm_ops' functions: affinst_suspend() and affinst_suspend_finish(). Change-Id: Ib6bf10809cb4e9b92f463755608889aedd83cef5
-
- 12 Feb, 2015 1 commit
-
-
Soby Mathew authored
This patch removes the plat_get_max_afflvl() platform API and instead replaces it with a platform macro PLATFORM_MAX_AFFLVL. This is done because the maximum affinity level for a platform is a static value and it is more efficient for it to be defined as a platform macro. NOTE: PLATFORM PORTS NEED TO BE UPDATED ON MERGE OF THIS COMMIT Fixes ARM-Software/tf-issues#265 Change-Id: I31d89b30c2ccda30d28271154d869060d50df7bf
-
- 26 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch implements the PSCI_FEATURES function which is a mandatory API in the PSCI 1.0 specification. A capability variable is constructed during initialization by examining the plat_pm_ops and spd_pm_ops exported by the platform and the Secure Payload Dispatcher. This is used by the PSCI FEATURES function to determine which PSCI APIs are supported by the platform. Change-Id: I147ffc1bd5d90b469bd3cc4bbe0a20e95c247df7
-
- 22 Jan, 2015 2 commits
-
-
Soby Mathew authored
This patch extends the build option `USE_COHERENT_MEMORY` to conditionally remove coherent memory from the memory maps of all boot loader stages. The patch also adds necessary documentation for coherent memory removal in firmware-design, porting and user guides. Fixes ARM-Software/tf-issues#106 Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
-
Soby Mathew authored
This patch moves the bakery locks out of coherent memory to normal memory. This implies that the lock information needs to be placed on a separate cache line for each cpu. Hence the bakery_lock_info_t structure is allocated in the per-cpu data so as to minimize memory wastage. A similar platform per-cpu data is introduced for the platform locks. As a result of the above changes, the bakery lock api is completely changed. Earlier, a reference to the lock structure was passed to the lock implementation. Now a unique-id (essentially an index into the per-cpu data array) and an offset into the per-cpu data for bakery_info_t needs to be passed to the lock implementation. Change-Id: I1e76216277448713c6c98b4c2de4fb54198b39e0
-
- 13 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch fixes a crash due to corruption of cpu_ops data structure. During the secondary CPU boot, after the cpu_ops has been initialized in the per cpu-data, the dcache lines need to invalidated so that the update in memory can be seen later on when the dcaches are turned ON. Also, after initializing the psci per cpu data, the dcache lines are flushed so that they are written back to memory and dirty dcache lines are avoided. Fixes ARM-Software/tf-issues#271 Change-Id: Ia90f55e9882690ead61226eea5a5a9146d35f313
-
- 12 Dec, 2014 1 commit
-
-
Soby Mathew authored
This patch fixes the assertion failure when CPU_SUSPEND is invoked with an affinity level higher than supported by the platform by adding suitable checks for affinity level within `psci_cpu_suspend`. Also added suitable bound checks within `psci_aff_map_get_idx` to prevent indexing beyond array limits. Fixes ARM-software/tf-issues#260 Change-Id: I04b75c49729e6c6d1983add590f60146c8fc3630
-
- 19 Aug, 2014 3 commits
-
-
Achin Gupta authored
This patch implements the following cleanups in PSCI generic code: 1. It reworks the affinity level specific handlers in the PSCI implementation such that. a. Usage of the 'rc' local variable is restricted to only where it is absolutely needed b. 'plat_state' local variable is defined only when a direct invocation of plat_get_phys_state() does not suffice. c. If a platform handler is not registered then the level specific handler returns early. 2. It limits the use of the mpidr_aff_map_nodes_t typedef to declaration of arrays of the type instead of using it in function prototypes as well. 3. It removes dangling declarations of __psci_cpu_off() and __psci_cpu_suspend(). The definitions of these functions were removed in earlier patches. Change-Id: I51e851967c148be9c2eeda3a3c41878f7b4d6978
-
Achin Gupta authored
This patch adds APIs to find, save and retrieve the highest affinity level which will enter or exit from the physical OFF state during a PSCI power management operation. The level is stored in per-cpu data. It then reworks the PSCI implementation to perform cache maintenance only when the handler for the highest affinity level to enter/exit the OFF state is called. For example. during a CPU_SUSPEND operation, state management is done prior to calling the affinity level specific handlers. The highest affinity level which will be turned off is determined using the psci_find_max_phys_off_afflvl() API. This level is saved using the psci_set_max_phys_off_afflvl() API. In the code that does generic handling for each level, prior to performing cache maintenance it is first determined if the current affinity level matches the value returned by psci_get_max_phys_off_afflvl(). Cache maintenance is done if the values match. This change allows the last CPU in a cluster to perform cache maintenance independently. Earlier, cache maintenance was started in the level 0 handler and finished in the level 1 handler. This change in approach will facilitate implementation of tf-issues#98. Change-Id: I57233f0a27b3ddd6ddca6deb6a88b234525b0ae6
-
Achin Gupta authored
This patch adds a structure defined by the PSCI service to the per-CPU data array. The structure is used to save the 'power_state' parameter specified during a 'cpu_suspend' call on the current CPU. This parameter was being saved in the cpu node in the PSCI topology tree earlier. The existing API to return the state id specified during a PSCI CPU_SUSPEND call i.e. psci_get_suspend_stateid(mpidr) has been renamed to psci_get_suspend_stateid_by_mpidr(mpidr). The new psci_get_suspend_stateid() API returns the state id of the current cpu. The psci_get_suspend_afflvl() API has been changed to return the target affinity level of the current CPU. This was specified using the 'mpidr' parameter in the old implementation. The behaviour of the get_power_on_target_afflvl() has been tweaked such that traversal of the PSCI topology tree to locate the affinity instance node for the current CPU is done only in the debug build as it is an expensive operation. Change-Id: Iaad49db75abda471f6a82d697ee6e0df554c4caf
-
- 23 Jun, 2014 2 commits
-
-
Andrew Thoelke authored
psci_suspend_context is an array of cache-line aligned structures containing the single power_state integer per cpu. This array is the only structure indexed by the aff_map_node.data integer. This patch saves 2KB of BL3-1 memory by placing the CPU power_state value directly in the aff_map_node structure. As a result, this value is now never cached and the cache clean when writing the value is no longer required. Fixes ARM-software/tf-issues#195 Change-Id: Ib4c70c8f79eed295ea541e7827977a588a19ef9b
-
Andrew Thoelke authored
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI and SPDs into two functions: * The first uses entry_point_info to initialize the relevant cpu_context for first entry into a lower exception level on a CPU * The second populates the EL1 and EL2 system registers as needed from the cpu_context to ensure correct entry into the lower EL This patch alters the way that BL3-1 determines which exception level is used when first entering EL1 or EL2 during cold boot - this is now fully determined by the SPSR value in the entry_point_info for BL3-3, as set up by the platform code in BL2 (or otherwise provided to BL3-1). In the situation that EL1 (or svc mode) is selected for a processor that supports EL2, the context management code will now configure all essential EL2 register state to ensure correct execution of EL1. This allows the platform code to run non-secure EL1 payloads directly without requiring a small EL2 stub or OS loader. Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
-
- 11 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
All callers of cm_get_context() pass the calling CPU MPIDR to the function. Providing a specialised version for the current CPU results in a reduction in code size and better readability. The current function has been renamed to cm_get_context_by_mpidr() and the existing name is now used for the current-CPU version. The same treatment has been done to cm_set_context(), although only both forms are used at present in the PSCI and TSPD code. Change-Id: I91cb0c2f7bfcb950a045dbd9ff7595751c0c0ffb
-
- 23 May, 2014 1 commit
-
-
Dan Handley authored
Some data variables were declared but not used. These have been removed. Change-Id: I038632af3c32d88984cd25b886c43ff763269bf9
-
- 16 May, 2014 1 commit
-
-
Soby Mathew authored
This patch implements the register reporting when unhandled exceptions are taken in BL3-1. Unhandled exceptions will result in a dump of registers to the console, before halting execution by that CPU. The Crash Stack, previously called the Exception Stack, is used for this activity. This stack is used to preserve the CPU context and runtime stack contents for debugging and analysis. This also introduces the per_cpu_ptr_cache, referenced by tpidr_el3, to provide easy access to some of BL3-1 per-cpu data structures. Initially, this is used to provide a pointer to the Crash stack. panic() now prints the the error file and line number in Debug mode and prints the PC value in release mode. The Exception Stack is renamed to Crash Stack with this patch. The original intention of exception stack is no longer valid since we intend to support several valid exceptions like IRQ and FIQ in the trusted firmware context. This stack is now utilized for dumping and reporting the system state when a crash happens and hence the rename. Fixes ARM-software/tf-issues#79 Improve reporting of unhandled exception Change-Id: I260791dc05536b78547412d147193cdccae7811a
-
- 06 May, 2014 3 commits
-
-
Dan Handley authored
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
-
Dan Handley authored
Add tag names to all unnamed structs in header files. This allows forward declaration of structs, which is necessary to reduce header file nesting (to be implemented in a subsequent commit). Also change the typedef names across the codebase to use the _t suffix to be more conformant with the Linux coding style. The coding style actually prefers us not to use typedefs at all but this is considered a step too far for Trusted Firmware. Also change the IO framework structs defintions to use typedef'd structs to be consistent with the rest of the codebase. Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
-
Dan Handley authored
Make codebase consistent in its use of #include "" syntax for user includes and #include <> syntax for system includes. Fixes ARM-software/tf-issues#65 Change-Id: If2f7c4885173b1fd05ac2cde5f1c8a07000c7a33
-
- 29 Apr, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch saves the 'power_state' parameter prior to suspending a cpu and invalidates it upon its resumption. The 'affinity level' and 'state id' fields of this parameter can be read using a set of public and private apis. Validation of power state parameter is introduced which checks for SBZ bits are zero. This change also takes care of flushing the parameter from the cache to main memory. This ensures that it is available after cpu reset when the caches and mmu are turned off. The earlier support for saving only the 'affinity level' field of the 'power_state' parameter has also been reworked. Fixes ARM-Software/tf-issues#26 Fixes ARM-Software/tf-issues#130 Change-Id: Ic007ccb5e39bf01e0b67390565d3b4be33f5960a
-
- 20 Mar, 2014 1 commit
-
-
Jeenu Viswambharan authored
This patch implements ARM Standard Service as a runtime service and adds support for call count, UID and revision information SMCs. The existing PSCI implementation is subsumed by the Standard Service calls and all PSCI calls are therefore dispatched by the Standard Service to the PSCI handler. At present, PSCI is the only specification under Standard Service. Thus call count returns the number of PSCI calls implemented. As this is the initial implementation, a revision number of 0.1 is returned for call revision. Fixes ARM-software/tf-issues#62 Change-Id: I6d4273f72ad6502636efa0f872e288b191a64bc1
-
- 20 Feb, 2014 1 commit
-
-
Achin Gupta authored
This patch creates a 'services' directory and moves the PSCI under it. Other runtime services e.g. the Secure Payload Dispatcher service will be placed under the same directory in the future. Also fixes issue ARM-software/tf-issues#12 Change-Id: I187f83dcb660b728f82155d91882e961d2255068
-
- 17 Feb, 2014 4 commits
-
-
Jeenu Viswambharan authored
This patch uses the reworked exception handling support to handle runtime service requests through SMCs following the SMC calling convention. This is a giant commit since all the changes are inter-related. It does the following: 1. Replace the old exception handling mechanism with the new one 2. Enforce that SP_EL0 is used C runtime stacks. 3. Ensures that the cold and warm boot paths use the 'cpu_context' structure to program an ERET into the next lower EL. 4. Ensures that SP_EL3 always points to the next 'cpu_context' structure prior to an ERET into the next lower EL 5. Introduces a PSCI SMC handler which completes the use of PSCI as a runtime service Change-Id: I661797f834c0803d2c674d20f504df1b04c2b852 Co-authored-by: Achin Gupta <achin.gupta@arm.com>
-
Achin Gupta authored
This patch introduces the framework to enable registration and initialisation of runtime services. PSCI is registered and initialised as a runtime service. Handling of runtime service requests will be implemented in subsequent patches. Change-Id: Id21e7ddc5a33d42b7d6e455b41155fc5441a9547
-
Achin Gupta authored
This patch uses the context library to save and restore EL3 state on the 'cpu_context' data structures allocated by PSCI for managing non-secure state context on each cpu. Change-Id: I19c1f26578204a7cd9e0a6c582ced0d97ee4cf80
-
James Morrissey authored
Also fix warnings generated in release builds when assert code is absent. Change-Id: I45b9173d3888f9e93e98eb5b4fdc06727ba5cbf4
-
- 20 Jan, 2014 1 commit
-
-
Achin Gupta authored
The psci implementation does not track target affinity level requests specified during cpu_suspend calls correctly as per the following example. 1. cpu0.cluster0 calls cpu_suspend with the target affinity level as 0 2. Only the cpu0.cluster0 is powered down while cluster0 remains powered up 3. cpu1.cluster0 calls cpu_off to power itself down to highest possible affinity level 4. cluster0 will be powered off even though cpu0.cluster0 does not allow cluster shutdown This patch introduces reference counts at affinity levels > 0 to track the number of cpus which want an affinity instance at level X to remain powered up. This instance can be turned off only if its reference count is 0. Cpus still undergo the normal state transitions (ON, OFF, ON_PENDING, SUSPEND) but the higher levels can only be either ON or OFF depending upon their reference count. The above issue is thus fixed as follows: 1. cluster0's reference count is incremented by two when cpu0 and cpu1 are initially powered on. 2. cpu0.cluster0 calls cpu_suspend with the target affinity level as 0. This does not affect the cluster0 reference count. 3. Only the cpu0.cluster0 is powered down while cluster0 remains powered up as it has a non-zero reference count. 4. cpu1.cluster0 call cpu_off to power itself down to highest possible affinity level. This decrements the cluster0 reference count. 5. cluster0 is still not powered off since its reference count will at least be 1 due to the restriction placed by cpu0. Change-Id: I433dfe82b946f5f6985b1602c2de87800504f7a9
-
- 17 Jan, 2014 1 commit
-
-
Dan Handley authored
Change-Id: Ic7fb61aabae1d515b9e6baf3dd003807ff42da60
-
- 05 Dec, 2013 2 commits
-
-
Achin Gupta authored
This patch performs a major rework of the psci generic implementation to achieve the following: 1. replace recursion with iteration where possible to aid code readability e.g. affinity instance states are changed iteratively instead of recursively. 2. acquire pointers to affinity instance nodes at the beginning of a psci operation. All subsequent actions use these pointers instead of calling psci_get_aff_map_node() repeatedly e.g. management of locks has been abstracted under functions which use these pointers to ensure correct ordering. Helper functions have been added to create these abstractions. 3. assertions have been added to cpu level handlers to ensure correct state transition 4. the affinity level extents specified to various functions have the same meaning i.e. start level is always less than the end level. Change-Id: If0508c3a7b20ea3ddda2a66128429382afc3dfc8
-
Dan Handley authored
- Add instructions for contributing to ARM Trusted Firmware. - Update copyright text in all files to acknowledge contributors. Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
-
- 25 Oct, 2013 1 commit
-
-
Achin Gupta authored
-