1. 02 Dec, 2015 1 commit
    • Juan Castillo's avatar
      TBB: add Trusted Watchdog support on ARM platforms · 7b4c1405
      Juan Castillo authored
      This patch adds watchdog support on ARM platforms (FVP and Juno).
      A secure instance of SP805 is used as Trusted Watchdog. It is
      entirely managed in BL1, being enabled in the early platform setup
      hook and disabled in the exit hook. By default, the watchdog is
      enabled in every build (even when TBB is disabled).
      
      A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG`
      has been introduced to allow the user to disable the watchdog at
      build time. This feature may be used for testing or debugging
      purposes.
      
      Specific error handlers for Juno and FVP are also provided in this
      patch. These handlers will be called after an image load or
      authentication error. On FVP, the Table of Contents (ToC) in the FIP
      is erased. On Juno, the corresponding error code is stored in the
      V2M Non-Volatile flags register. In both cases, the CPU spins until
      a watchdog reset is generated after 256 seconds (as specified in
      the TBBR document).
      
      Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
      7b4c1405
  2. 27 Nov, 2015 1 commit
    • Juan Castillo's avatar
      Add basic NOR flash driver for ARM platforms · 9784dbda
      Juan Castillo authored
      FVP and Juno platforms include a NOR flash memory to store and
      load the FIP, the kernel or a ramdisk. This NOR flash is arranged
      as 2 x 16 bit flash devices and can be programmed using CFI
      standard commands.
      
      This patch provides a basic API to write single 32 bit words of
      data into the NOR flash. Functions to lock/unlock blocks against
      erase or write operations are also provided.
      
      Change-Id: I1da7ad3105b1ea409c976adc863954787cbd90d2
      9784dbda
  3. 26 Nov, 2015 1 commit
    • Sandrine Bailleux's avatar
      CSS: Enable booting of EL3 payloads · 4c117f6c
      Sandrine Bailleux authored
      This patch adds support for booting EL3 payloads on CSS platforms,
      for example Juno. In this scenario, the Trusted Firmware follows
      its normal boot flow up to the point where it would normally pass
      control to the BL31 image. At this point, it jumps to the EL3
      payload entry point address instead.
      
      Before handing over to the EL3 payload, the data SCP writes for AP
      at the beginning of the Trusted SRAM is restored, i.e. we zero the
      first 128 bytes and restore the SCP Boot configuration. The latter
      is saved before transferring the BL30 image to SCP and is restored
      just after the transfer (in BL2). The goal is to make it appear that
      the EL3 payload is the first piece of software to run on the target.
      
      The BL31 entrypoint info structure is updated to make the primary
      CPU jump to the EL3 payload instead of the BL31 image.
      
      The mailbox is populated with the EL3 payload entrypoint address,
      which releases the secondary CPUs out of their holding pen (if the
      SCP has powered them on). The arm_program_trusted_mailbox() function
      has been exported for this purpose.
      
      The TZC-400 configuration in BL2 is simplified: it grants secure
      access only to the whole DRAM. Other security initialization is
      unchanged.
      
      This alternative boot flow is disabled by default. A new build option
      EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3
      payload's entry point address. The build system has been modified
      such that BL31 and BL33 are not compiled and/or not put in the FIP in
      this case, as those images are not used in this boot flow.
      
      Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
      4c117f6c
  4. 24 Nov, 2015 1 commit
    • Soby Mathew's avatar
      Replace build macro WARN_DEPRECATED with ERROR_DEPRECATED · 7a24cba5
      Soby Mathew authored
      This patch changes the build time behaviour when using deprecated API within
      Trusted Firmware. Previously the use of deprecated APIs would only trigger a
      build warning (which was always treated as a build error), when
      WARN_DEPRECATED = 1. Now, the use of deprecated C declarations will always
      trigger a build time warning. Whether this warning is treated as error or not
      is determined by the build flag ERROR_DEPRECATED which is disabled by default.
      When the build flag ERROR_DEPRECATED=1, the invocation of deprecated API or
      inclusion of deprecated headers will result in a build error.
      
      Also the deprecated context management helpers in context_mgmt.c are now
      conditionally compiled depending on the value of ERROR_DEPRECATED flag
      so that the APIs themselves do not result in a build error when the
      ERROR_DEPRECATED flag is set.
      
      NOTE: Build systems that use the macro WARN_DEPRECATED must migrate to
      using ERROR_DEPRECATED, otherwise deprecated API usage will no longer
      trigger a build error.
      
      Change-Id: I843bceef6bde979af7e9b51dddf861035ec7965a
      7a24cba5
  5. 30 Oct, 2015 3 commits
    • Soby Mathew's avatar
      Include xlat_tables.h in plat_arm.h · 8f6623f0
      Soby Mathew authored
      This patch fixes a compilation issue for platforms that are aligned to ARM
      Standard platforms and include the `plat_arm.h` header in their platform port.
      The compilation would fail for such a platform because `xlat_tables.h` which
      has the definition for `mmap_region_t` is not included in `plat_arm.h`. This
      patch fixes this by including `xlat_tables.h` in `plat_arm.h` header.
      
      Fixes ARM-Software/tf-issues#318
      
      Change-Id: I75f990cfb4078b3996fc353c8cd37c9de61d555e
      8f6623f0
    • Soby Mathew's avatar
      Support PSCI SYSTEM SUSPEND on Juno · c1bb8a05
      Soby Mathew authored
      This patch adds the capability to power down at system power domain level
      on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers
      are modified to add support for power management operations at system
      power domain level. A new helper for populating `get_sys_suspend_power_state`
      handler in plat_psci_ops is defined. On entering the system suspend state,
      the SCP powers down the SYSTOP power domain on the SoC and puts the memory
      into retention mode. On wakeup from the power down, the system components
      on the CSS will be reinitialized by the platform layer and the PSCI client
      is responsible for restoring the context of these system components.
      
      According to PSCI Specification, interrupts targeted to cores in PSCI CPU
      SUSPEND should be able to resume it. On Juno, when the system power domain
      is suspended, the GIC is also powered down. The SCP resumes the final core
      to be suspend when an external wake-up event is received. But the other
      cores cannot be woken up by a targeted interrupt, because GIC doesn't
      forward these interrupts to the SCP. Due to this hardware limitation,
      we down-grade PSCI CPU SUSPEND requests targeted to the system power domain
      level to cluster power domain level in `juno_validate_power_state()`
      and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c.
      
      A system power domain resume helper `arm_system_pwr_domain_resume()` is
      defined for ARM standard platforms which resumes/re-initializes the
      system components on wakeup from system suspend. The security setup also
      needs to be done on resume from system suspend, which means
      `plat_arm_security_setup()` must now be included in the BL3-1 image in
      addition to previous BL images if system suspend need to be supported.
      
      Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
      c1bb8a05
    • Soby Mathew's avatar
      CSS: Implement topology support for System power domain · 5f3a6030
      Soby Mathew authored
      This patch implements the necessary topology changes for supporting
      system power domain on CSS platforms. The definition of PLAT_MAX_PWR_LVL and
      PLAT_NUM_PWR_DOMAINS macros are removed from arm_def.h and are made platform
      specific. In addition, the `arm_power_domain_tree_desc[]` and
      `arm_pm_idle_states[]` are modified to support the system power domain
      at level 2. With this patch, even though the power management operations
      involving the system power domain will not return any error, the platform
      layer will silently ignore any operations to the power domain. The actual
      power management support for the system power domain will be added later.
      
      Change-Id: I791867eded5156754fe898f9cdc6bba361e5a379
      5f3a6030
  6. 28 Oct, 2015 1 commit
    • Juan Castillo's avatar
      Add optional platform error handler API · 40fc6cd1
      Juan Castillo authored
      This patch adds an optional API to the platform port:
      
          void plat_error_handler(int err) __dead2;
      
      The platform error handler is called when there is a specific error
      condition after which Trusted Firmware cannot continue. While panic()
      simply prints the crash report (if enabled) and spins, the platform
      error handler can be used to hand control over to the platform port
      so it can perform specific bookeeping or post-error actions (for
      example, reset the system). This function must not return.
      
      The parameter indicates the type of error using standard codes from
      errno.h. Possible errors reported by the generic code are:
      
          -EAUTH  : a certificate or image could not be authenticated
                    (when Trusted Board Boot is enabled)
          -ENOENT : the requested image or certificate could not be found
                    or an IO error was detected
          -ENOMEM : resources exhausted. Trusted Firmware does not use
                    dynamic memory, so this error is usually an indication
                    of an incorrect array size
      
      A default weak implementation of this function has been provided.
      It simply implements an infinite loop.
      
      Change-Id: Iffaf9eee82d037da6caa43b3aed51df555e597a3
      40fc6cd1
  7. 20 Oct, 2015 1 commit
    • Soby Mathew's avatar
      Reorganise PSCI PM handler setup on ARM Standard platforms · 785fb92b
      Soby Mathew authored
      This patch does the following reorganization to psci power management (PM)
      handler setup for ARM standard platform ports :
      
      1. The mailbox programming required during `plat_setup_psci_ops()` is identical
         for all ARM platforms. Hence the implementation of this API is now moved
         to the common `arm_pm.c` file. Each ARM platform now must define the
         PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same
         as ARM_SHARED_RAM_BASE.
      
      2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be
         exported via `plat_arm_psci_pm_ops`. This allows the common implementation
         of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`.
         In the case of CSS platforms, a default weak implementation of the same is
         provided in `css_pm.c` which can be overridden by each CSS platform.
      
      3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now
         made library functions and a new header file `css_pm.h` is added to export
         these generic PM handlers. This allows the platform to reuse the
         adequate CSS PM handlers and redefine others which need to be customized
         when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`.
      
      Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
      785fb92b
  8. 11 Sep, 2015 3 commits
    • Vikram Kanigiri's avatar
      Update ARM platform ports to use new bakery lock apis. · e25e6f41
      Vikram Kanigiri authored
      This patch updates ARM platform ports to use the new unified bakery locks
      API. The caller does not have to use a different bakery lock API depending upon
      the value of the USE_COHERENT_MEM build option.
      
      NOTE: THIS PATCH CAN BE USED AS A REFERENCE TO UPDATE OTHER PLATFORM PORTS.
      
      Change-Id: I1b26afc7c9a9808a6040eb22f603d30192251da7
      e25e6f41
    • Vikram Kanigiri's avatar
      Define the Non-Secure timer frame ID for ARM platforms · 4b1439c5
      Vikram Kanigiri authored
      On Juno and FVP platforms, the Non-Secure System timer corresponds
      to frame 1. However, this is a platform-specific decision and it
      shouldn't be hard-coded. Hence, this patch introduces
      PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms
      to specify the correct non-secure timer frame.
      
      Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
      4b1439c5
    • Vikram Kanigiri's avatar
      Re-factor definition of TZC-400 base address · e86c1ff0
      Vikram Kanigiri authored
      This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to
      support different TrustZone Controller base addresses across ARM platforms.
      
      Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
      e86c1ff0
  9. 01 Sep, 2015 1 commit
    • Vikram Kanigiri's avatar
      Configure all secure interrupts on ARM platforms · a7270d35
      Vikram Kanigiri authored
      ARM TF configures all interrupts as non-secure except those which
      are present in irq_sec_array. This patch updates the irq_sec_array
      with the missing secure interrupts for ARM platforms.
      
      It also updates the documentation to be inline with the latest
      implementation.
      
      Fixes ARM-software/tf-issues#312
      
      Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
      a7270d35
  10. 13 Aug, 2015 11 commits
    • Soby Mathew's avatar
      PSCI: Validate non secure entrypoint on ARM platforms · f9e858b1
      Soby Mathew authored
      This patch implements the platform power managment handler to verify
      non secure entrypoint for ARM platforms. The handler ensures that the
      entry point specified by the normal world during CPU_SUSPEND, CPU_ON
      or SYSTEM_SUSPEND PSCI API is a valid address within the non secure
      DRAM.
      
      Change-Id: I4795452df99f67a24682b22f0e0967175c1de429
      f9e858b1
    • Sandrine Bailleux's avatar
      PSCI: Use a single mailbox for warm reset for FVP and Juno · 804040d1
      Sandrine Bailleux authored
      Since there is a unique warm reset entry point, the FVP and Juno
      port can use a single mailbox instead of maintaining one per core.
      The mailbox gets programmed only once when plat_setup_psci_ops()
      is invoked during PSCI initialization. This means mailbox is not
      zeroed out during wakeup.
      
      Change-Id: Ieba032a90b43650f970f197340ebb0ce5548d432
      804040d1
    • Soby Mathew's avatar
      PSCI: Demonstrate support for composite power states · 2204afde
      Soby Mathew authored
      This patch adds support to the Juno and FVP ports for composite power states
      with both the original and extended state-id power-state formats. Both the
      platform ports use the recommended state-id encoding as specified in
      Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag
      ARM_RECOM_STATE_ID_ENC is used to include this support.
      
      By default, to maintain backwards compatibility, the original power state
      parameter format is used and the state-id field is expected to be zero.
      
      Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
      2204afde
    • Soby Mathew's avatar
      PSCI: Migrate ARM reference platforms to new platform API · 38dce70f
      Soby Mathew authored
      This patch migrates ARM reference platforms, Juno and FVP, to the new platform
      API mandated by the new PSCI power domain topology and composite power state
      frameworks. The platform specific makefiles now exports the build flag
      ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer.
      
      Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
      38dce70f
    • Soby Mathew's avatar
      PSCI: Add deprecated API for SPD when compatibility is disabled · 5c8babcd
      Soby Mathew authored
      This patch defines deprecated platform APIs to enable Trusted
      Firmware components like Secure Payload and their dispatchers(SPD)
      to continue to build and run when platform compatibility is disabled.
      This decouples the migration of platform ports to the new platform API
      from SPD and enables them to be migrated independently. The deprecated
      platform APIs defined in this patch are : platform_get_core_pos(),
      platform_get_stack() and platform_set_stack().
      
      The patch also deprecates MPIDR based context management helpers like
      cm_get_context_by_mpidr(), cm_set_context_by_mpidr() and cm_init_context().
      A mechanism to deprecate APIs and identify callers of these APIs during
      build is introduced, which is controlled by the build flag WARN_DEPRECATED.
      If WARN_DEPRECATED is defined to 1, the users of the deprecated APIs will be
      flagged either as a link error for assembly files or compile time warning
      for C files during build.
      
      Change-Id: Ib72c7d5dc956e1a74d2294a939205b200f055613
      5c8babcd
    • Soby Mathew's avatar
      PSCI: Switch to the new PSCI frameworks · 67487846
      Soby Mathew authored
      This commit does the switch to the new PSCI framework implementation replacing
      the existing files in PSCI folder with the ones in PSCI1.0 folder. The
      corresponding makefiles are modified as required for the new implementation.
      The platform.h header file is also is switched to the new one
      as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults
      to 1 to enable compatibility layer which let the existing platform ports to
      continue to build and run with minimal changes.
      
      The default weak implementation of platform_get_core_pos() is now removed from
      platform_helpers.S and is provided by the compatibility layer.
      
      Note: The Secure Payloads and their dispatchers still use the old platform
      and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build
      flag will remain enabled in subsequent patch. The compatibility for SPDs using
      the older APIs on platforms migrated to the new APIs will be added in the
      following patch.
      
      Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
      67487846
    • Soby Mathew's avatar
      PSCI: Implement platform compatibility layer · 32bc85f2
      Soby Mathew authored
      The new PSCI topology framework and PSCI extended State framework introduces
      a breaking change in the platform port APIs. To ease the migration of the
      platform ports to the new porting interface, a compatibility layer is
      introduced which essentially defines the new platform API in terms of the
      old API. The old PSCI helpers to retrieve the power-state, its associated
      fields and the highest coordinated physical OFF affinity level of a core
      are also implemented for compatibility. This allows the existing
      platform ports to work with the new PSCI framework without significant
      rework. This layer will be enabled by default once the switch to the new
      PSCI framework is done and is controlled by the build flag ENABLE_PLAT_COMPAT.
      
      Change-Id: I4b17cac3a4f3375910a36dba6b03d8f1700d07e3
      32bc85f2
    • Sandrine Bailleux's avatar
      PSCI: Unify warm reset entry points · eb975f52
      Sandrine Bailleux authored
      There used to be 2 warm reset entry points:
      
       - the "on finisher", for when the core has been turned on using a
         PSCI CPU_ON call;
      
       - the "suspend finisher", entered upon resumption from a previous
         PSCI CPU_SUSPEND call.
      
      The appropriate warm reset entry point used to be programmed into the
      mailboxes by the power management hooks.
      
      However, it is not required to provide this information to the PSCI
      entry point code, as it can figure it out by itself. By querying affinity
      info state, a core is able to determine on which execution path it is.
      If the state is ON_PENDING then it means it's been turned on else
      it is resuming from suspend.
      
      This patch unifies the 2 warm reset entry points into a single one:
      psci_entrypoint(). The patch also implements the necessary logic
      to distinguish between the 2 types of warm resets in the power up
      finisher.
      
      The plat_setup_psci_ops() API now takes the
      secure entry point as an additional parameter to enable the platforms
      to configure their mailbox. The platform hooks `pwr_domain_on`
      and `pwr_domain_suspend` no longer take secure entry point as
      a parameter.
      
      Change-Id: I7d1c93787b54213aefdbc046b8cd66a555dfbfd9
      eb975f52
    • Soby Mathew's avatar
      PSCI: Add framework to handle composite power states · 8ee24980
      Soby Mathew authored
      The state-id field in the power-state parameter of a CPU_SUSPEND call can be
      used to describe composite power states specific to a platform. The current PSCI
      implementation does not interpret the state-id field. It relies on the target
      power level and the state type fields in the power-state parameter to perform
      state coordination and power management operations. The framework introduced
      in this patch allows the PSCI implementation to intepret generic global states
      like RUN, RETENTION or OFF from the State-ID to make global state coordination
      decisions and reduce the complexity of platform ports. It adds support to
      involve the platform in state coordination which facilitates the use of
      composite power states and improves the support for entering standby states
      at multiple power domains.
      
      The patch also includes support for extended state-id format for the power
      state parameter as specified by PSCIv1.0.
      
      The PSCI implementation now defines a generic representation of the power-state
      parameter. It depends on the platform port to convert the power-state parameter
      (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this
      representation via the `validate_power_state()` plat_psci_ops handler. It is an
      array where each index corresponds to a power level. Each entry contains the
      local power state the power domain at that power level could enter.
      
      The meaning of the local power state values is platform defined, and may vary
      between levels in a single platform. The PSCI implementation constrains the
      values only so that it can classify the state as RUN, RETENTION or OFF as
      required by the specification:
         * zero means RUN
         * all OFF state values at all levels must be higher than all RETENTION
           state values at all levels
         * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values
           to the framework
      
      The platform also must define the macros PLAT_MAX_RET_STATE and
      PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power
      domains have been requested to enter a retention or power down state. The PSCI
      implementation does not interpret the local power states defined by the
      platform. The only constraint is that the PLAT_MAX_RET_STATE <
      PLAT_MAX_OFF_STATE.
      
      For a power domain tree, the generic implementation maintains an array of local
      power states. These are the states requested for each power domain by all the
      cores contained within the domain. During a request to place multiple power
      domains in a low power state, the platform is passed an array of requested
      power-states for each power domain through the plat_get_target_pwr_state()
      API. It coordinates amongst these states to determine a target local power
      state for the power domain. A default weak implementation of this API is
      provided in the platform layer which returns the minimum of the requested
      power-states back to the PSCI state coordination.
      
      Finally, the plat_psci_ops power management handlers are passed the target
      local power states for each affected power domain using the generic
      representation described above. The platform executes operations specific to
      these target states.
      
      The platform power management handler for placing a power domain in a standby
      state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for
      placing a core power domain into a standby or retention state should now be
      used to only place the core power domain in a standby or retention state.
      
      The extended state-id power state format can be enabled by setting the
      build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default.
      
      Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
      8ee24980
    • Soby Mathew's avatar
      PSCI: Introduce new platform interface to describe topology · 82dcc039
      Soby Mathew authored
      This patch removes the assumption in the current PSCI implementation that MPIDR
      based affinity levels map directly to levels in a power domain tree. This
      enables PSCI generic code to support complex power domain topologies as
      envisaged by PSCIv1.0 specification. The platform interface for querying
      the power domain topology has been changed such that:
      
      1. The generic PSCI code does not generate MPIDRs and use them to query the
         platform about the number of power domains at a particular power level. The
         platform now provides a description of the power domain tree on the SoC
         through a data structure. The existing platform APIs to provide the same
         information have been removed.
      
      2. The linear indices returned by plat_core_pos_by_mpidr() and
         plat_my_core_pos() are used to retrieve core power domain nodes from the
         power domain tree. Power domains above the core level are accessed using a
         'parent' field in the tree node descriptors.
      
      The platform describes the power domain tree in an array of 'unsigned
      char's. The first entry in the array specifies the number of power domains at
      the highest power level implemented in the system. Each susbsequent entry
      corresponds to a power domain and contains the number of power domains that are
      its direct children. This array is exported to the generic PSCI implementation
      via the new `plat_get_power_domain_tree_desc()` platform API.
      
      The PSCI generic code uses this array to populate its internal power domain tree
      using the Breadth First Search like algorithm. The tree is split into two
      arrays:
      
      1. An array that contains all the core power domain nodes
      
      2. An array that contains all the other power domain nodes
      
      A separate array for core nodes allows certain core specific optimisations to
      be implemented e.g. remove the bakery lock, re-use per-cpu data framework for
      storing some information.
      
      Entries in the core power domain array are allocated such that the
      array index of the domain is equal to the linear index returned by
      plat_core_pos_by_mpidr() and plat_my_core_pos() for the MPIDR
      corresponding to that domain. This relationship is key to be able to use
      an MPIDR to find the corresponding core power domain node, traverse to higher
      power domain nodes and index into arrays that contain core specific
      information.
      
      An introductory document has been added to briefly describe the new interface.
      
      Change-Id: I4b444719e8e927ba391cae48a23558308447da13
      82dcc039
    • Soby Mathew's avatar
      PSCI: Introduce new platform and CM helper APIs · 12d0d00d
      Soby Mathew authored
      This patch introduces new platform APIs and context management helper APIs
      to support the new topology framework based on linear core position. This
      framework will be introduced in the follwoing patch and it removes the
      assumption that the MPIDR based affinity levels map directly to levels
      in a power domain tree. The new platforms APIs and context management
      helpers based on core position are as described below:
      
      * plat_my_core_pos() and plat_core_pos_by_mpidr()
      
      These 2 new mandatory platform APIs are meant to replace the existing
      'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the
      linear index of the calling core and 'plat_core_pos_by_mpidr()' returns
      the linear index of a core specified by its MPIDR. The latter API will also
      validate the MPIDR passed as an argument and will return an error code (-1)
      if an invalid MPIDR is passed as the argument. This enables the caller to
      safely convert an MPIDR of another core to its linear index without querying
      the PSCI topology tree e.g. during a call to PSCI CPU_ON.
      
      Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always
      platform specific, it is no longer possible to maintain a default implementation
      of this API. Also it might not be possible for a platform port to verify an
      MPIDR before the C runtime has been setup or the topology has been initialized.
      This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to
      topology setup. As a result, the generic Trusted Firmware code does not call
      this API before the topology setup has been done.
      
      The 'plat_my_core_pos' API should be able to run without a C runtime.
      Since this API needs to return a core position which is equal to the one
      returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR,
      this too cannot have default implementation and is a mandatory API for
      platform ports. These APIs will be implemented by the ARM reference platform
      ports later in the patch stack.
      
      * plat_get_my_stack() and plat_set_my_stack()
      
      These APIs are the stack management APIs which set/return stack addresses
      appropriate for the calling core. These replace the 'platform_get_stack()' and
      'platform_set_stack()' APIs. A default weak MP version and a global UP version
      of these APIs are provided for the platforms.
      
      * Context management helpers based on linear core position
      
      A set of new context management(CM) helpers viz cm_get_context_by_index(),
      cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index()
      are defined which are meant to replace the old helpers which took MPIDR
      as argument. The old CM helpers are implemented based on the new helpers to
      allow for code consolidation and will be deprecated once the switch to the new
      framework is done.
      
      Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
      12d0d00d
  11. 05 Aug, 2015 3 commits
    • Soby Mathew's avatar
      PSCI: Remove references to affinity based power management · 4067dc31
      Soby Mathew authored
      As per Section 4.2.2. in the PSCI specification, the term "affinity"
      is used in the context of describing the hierarchical arrangement
      of cores. This often, but not always, maps directly to the processor
      power domain topology of the system. The current PSCI implementation
      assumes that this is always the case i.e. MPIDR based levels of
      affinity always map to levels in a power domain topology tree.
      
      This patch is the first in a series of patches which remove this
      assumption. It removes all occurences of the terms "affinity
      instances and levels" when used to describe the power domain
      topology. Only the terminology is changed in this patch. Subsequent
      patches will implement functional changes to remove the above
      mentioned assumption.
      
      Change-Id: Iee162f051b228828310610c5a320ff9d31009b4e
      4067dc31
    • Soby Mathew's avatar
      PSCI: Create new directory to implement new frameworks · b48349eb
      Soby Mathew authored
      This patch creates a copy of the existing PSCI files and related psci.h and
      platform.h header files in a new `PSCI1.0` directory. The changes for the
      new PSCI power domain topology and extended state-ID frameworks will be
      added incrementally to these files. This incremental approach will
      aid in review and in understanding the changes better. Once all the
      changes have been introduced, these files will replace the existing PSCI
      files.
      
      Change-Id: Ibb8a52e265daa4204e34829ed050bddd7e3316ff
      b48349eb
    • Juan Castillo's avatar
      Fix build error with optimizations disabled (-O0) · 80bb6afd
      Juan Castillo authored
      If Trusted Firmware is built with optimizations disabled (-O0), the
      linker throws the following error:
      
          undefined reference to 'xxx'
      
      Where 'xxx' is a raw inline function defined in a header file. The
      reason is that, with optimizations disabled, GCC may decide to skip
      the inlining. If that is the case, an external definition to the
      compilation unit must be provided. Because no external definition
      is present, the linker throws the error.
      
      This patch fixes the problem by declaring the following inline
      functions static, so the internal definition is used:
      
          inline void soc_css_security_setup(void)
          inline const arm_config_t *get_arm_config(void)
      
      Change-Id: Id650d6be1b1396bdb48af1ac8a4c7900d212e95f
      80bb6afd
  12. 09 Jul, 2015 1 commit
    • Juan Castillo's avatar
      Use uintptr_t as base address type in ARM driver APIs · 02462972
      Juan Castillo authored
      This patch changes the type of the base address parameter in the
      ARM device driver APIs to uintptr_t (GIC, CCI, TZC400, PL011). The
      uintptr_t type allows coverage of the whole memory space and to
      perform arithmetic operations on the addresses. ARM platform code
      has also been updated to use uintptr_t as GIC base address in the
      configuration.
      
      Fixes ARM-software/tf-issues#214
      
      Change-Id: I1b87daedadcc8b63e8f113477979675e07d788f1
      02462972
  13. 25 Jun, 2015 5 commits
    • Juan Castillo's avatar
      TBB: delete deprecated plat_match_rotpk() · f04585f3
      Juan Castillo authored
      The authentication framework deprecates plat_match_rotpk()
      in favour of plat_get_rotpk_info(). This patch removes
      plat_match_rotpk() from the platform port.
      
      Change-Id: I2250463923d3ef15496f9c39678b01ee4b33883b
      f04585f3
    • Juan Castillo's avatar
      TBB: switch to the new authentication framework · 1779ba6b
      Juan Castillo authored
      This patch modifies the Trusted Board Boot implementation to use
      the new authentication framework, making use of the authentication
      module, the cryto module and the image parser module to
      authenticate the images in the Chain of Trust.
      
      A new function 'load_auth_image()' has been implemented. When TBB
      is enabled, this function will call the authentication module to
      authenticate parent images following the CoT up to the root of
      trust to finally load and authenticate the requested image.
      
      The platform is responsible for picking up the right makefiles to
      build the corresponding cryptographic and image parser libraries.
      ARM platforms use the mbedTLS based libraries.
      
      The platform may also specify what key algorithm should be used
      to sign the certificates. This is done by declaring the 'KEY_ALG'
      variable in the platform makefile. FVP and Juno use ECDSA keys.
      
      On ARM platforms, BL2 and BL1-RW regions have been increased 4KB
      each to accommodate the ECDSA code.
      
      REMOVED BUILD OPTIONS:
      
        * 'AUTH_MOD'
      
      Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
      1779ba6b
    • Juan Castillo's avatar
      TBB: add TBBR Chain of Trust · dff93c86
      Juan Castillo authored
      This patch adds a CoT based on the Trusted Board Boot Requirements
      document*. The CoT consists of an array of authentication image
      descriptors indexed by the image identifiers.
      
      A new header file with TBBR image identifiers has been added.
      Platforms that use the TBBR (i.e. ARM platforms) may reuse these
      definitions as part of their platform porting.
      
      PLATFORM PORT - IMPORTANT:
      
      Default image IDs have been removed from the platform common
      definitions file (common_def.h). As a consequence, platforms that
      used those common definitons must now either include the IDs
      provided by the TBBR header file or define their own IDs.
      
      *The NVCounter authentication method has not been implemented yet.
      
      Change-Id: I7c4d591863ef53bb0cd4ce6c52a60b06fa0102d5
      dff93c86
    • Juan Castillo's avatar
      TBB: add platform API to read the ROTPK information · 95cfd4ad
      Juan Castillo authored
      This patch extends the platform port by adding an API that returns
      either the Root of Trust public key (ROTPK) or its hash. This is
      usually stored in ROM or eFUSE memory. The ROTPK returned must be
      encoded in DER format according to the following ASN.1 structure:
      
          SubjectPublicKeyInfo  ::=  SEQUENCE  {
              algorithm           AlgorithmIdentifier,
              subjectPublicKey    BIT STRING
          }
      
      In case the platform returns a hash of the key:
      
          DigestInfo  ::= SEQUENCE {
              digestAlgorithm     AlgorithmIdentifier,
              keyDigest           OCTET STRING
          }
      
      An implementation for ARM development platforms is provided in this
      patch. When TBB is enabled, the ROTPK hash location must be specified
      using the build option 'ARM_ROTPK_LOCATION'. Available options are:
      
          - 'regs' : return the ROTPK hash stored in the Trusted
            root-key storage registers.
      
          - 'devel_rsa' : return a ROTPK hash embedded in the BL1 and
            BL2 binaries. This hash has been obtained from the development
            RSA public key located in 'plat/arm/board/common/rotpk'.
      
      On FVP, the number of MMU tables has been increased to map and
      access the ROTPK registers.
      
      A new file 'board_common.mk' has been added to improve code sharing
      in the ARM develelopment platforms.
      
      Change-Id: Ib25862e5507d1438da10773e62bd338da8f360bf
      95cfd4ad
    • Juan Castillo's avatar
      Use numbers to identify images instead of names · 16948ae1
      Juan Castillo authored
      The Trusted firmware code identifies BL images by name. The platform
      port defines a name for each image e.g. the IO framework uses this
      mechanism in the platform function plat_get_image_source(). For
      a given image name, it returns the handle to the image file which
      involves comparing images names. In addition, if the image is
      packaged in a FIP, a name comparison is required to find the UUID
      for the image. This method is not optimal.
      
      This patch changes the interface between the generic and platform
      code with regard to identifying images. The platform port must now
      allocate a unique number (ID) for every image. The generic code will
      use the image ID instead of the name to access its attributes.
      
      As a result, the plat_get_image_source() function now takes an image
      ID as an input parameter. The organisation of data structures within
      the IO framework has been rationalised to use an image ID as an index
      into an array which contains attributes of the image such as UUID and
      name. This prevents the name comparisons.
      
      A new type 'io_uuid_spec_t' has been introduced in the IO framework
      to specify images identified by UUID (i.e. when the image is contained
      in a FIP file). There is no longer need to maintain a look-up table
      [iname_name --> uuid] in the io_fip driver code.
      
      Because image names are no longer mandatory in the platform port, the
      debug messages in the generic code will show the image identifier
      instead of the file name. The platforms that support semihosting to
      load images (i.e. FVP) must provide the file names as definitions
      private to the platform.
      
      The ARM platform ports and documentation have been updated accordingly.
      All ARM platforms reuse the image IDs defined in the platform common
      code. These IDs will be used to access other attributes of an image in
      subsequent patches.
      
      IMPORTANT: applying this patch breaks compatibility for platforms that
      use TF BL1 or BL2 images or the image loading code. The platform port
      must be updated to match the new interface.
      
      Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
      16948ae1
  14. 18 Jun, 2015 1 commit
    • Ryan Harkin's avatar
      FVP: Add SP804 delay timer · b49b3221
      Ryan Harkin authored
      
      
      Add SP804 delay timer support to the FVP BSP.
      
      This commit simply provides the 3 constants needed by the SP804
      delay timer driver and calls sp804_timer_init() in
      bl2_platform_setup(). The BSP does not currently use the delay
      timer functions.
      
      Note that the FVP SP804 is a normal world accessible peripheral
      and should not be used by the secure world after transition
      to the normal world.
      
      Change-Id: I5f91d2ac9eb336fd81943b3bb388860dfb5f2b39
      Co-authored-by: default avatarDan Handley <dan.handley@arm.com>
      b49b3221
  15. 09 Jun, 2015 2 commits
    • Sandrine Bailleux's avatar
      CSS: Remove the constants MHU_SECURE_BASE/SIZE · fe55612b
      Sandrine Bailleux authored
      For CSS based platforms, the constants MHU_SECURE_BASE and
      MHU_SECURE_SIZE used to define the extents of the Trusted Mailboxes.
      As such, they were misnamed because the mailboxes are completely
      unrelated to the MHU hardware.
      
      This patch removes the MHU_SECURE_BASE and MHU_SECURE_SIZE #defines.
      The address of the Trusted Mailboxes is now relative to the base of
      the Trusted SRAM.
      
      This patch also introduces a new constant, SCP_COM_SHARED_MEM_BASE,
      which is the address of the first memory region used for communication
      between AP and SCP. This is used by the BOM and SCPI protocols.
      
      Change-Id: Ib200f057b19816bf05e834d111271c3ea777291f
      fe55612b
    • Sandrine Bailleux's avatar
      CSS: Clarify what the SCP boot config is · 9255da5f
      Sandrine Bailleux authored
      Add a comment explaining what the SCP boot configuration information
      is on CSS based platforms like Juno. Also express its address
      relatively to the base of the Trusted SRAM rather than hard-coding it.
      
      Change-Id: I82cf708a284c8b8212933074ea8c37bdf48b403b
      9255da5f
  16. 27 May, 2015 1 commit
  17. 28 Apr, 2015 2 commits
    • Dan Handley's avatar
      Migrate FVP port to use common code · 60eea55e
      Dan Handley authored
      Major update to the FVP platform port to use the common platform code
      in (include/)plat/arm/* and (include/)plat/common/*. This mainly
      consists of removing duplicated code but also introduces some small
      behavioural changes where there was unnecessary variation between the
      FVP and Juno ports. See earlier commit titled `Add common ARM and CSS
      platform code` for details.
      
      Also add support for Foundation FVP version 9.1 during FVP config
      setup to prevent a warning being emitted in the console.
      
      Change-Id: I254ca854987642ce09d1b924c9fd410a6e13e3bc
      60eea55e
    • Dan Handley's avatar
      Add common ARM and CSS platform code · b4315306
      Dan Handley authored
      This major change pulls out the common functionality from the
      FVP and Juno platform ports into the following categories:
      
      *   (include/)plat/common. Common platform porting functionality that
      typically may be used by all platforms.
      
      *   (include/)plat/arm/common. Common platform porting functionality
      that may be used by all ARM standard platforms. This includes all
      ARM development platforms like FVP and Juno but may also include
      non-ARM-owned platforms.
      
      *   (include/)plat/arm/board/common. Common platform porting
      functionality for ARM development platforms at the board
      (off SoC) level.
      
      *   (include/)plat/arm/css/common. Common platform porting
      functionality at the ARM Compute SubSystem (CSS) level. Juno
      is an example of a CSS-based platform.
      
      *   (include/)plat/arm/soc/common. Common platform porting
      functionality at the ARM SoC level, which is not already defined
      at the ARM CSS level.
      
      No guarantees are made about the backward compatibility of
      functionality provided in (include/)plat/arm.
      
      Also remove any unnecessary variation between the ARM development
      platform ports, including:
      
      *   Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the
      Juno implementation, which copies the information from BL2 memory
      instead of expecting it to persist in shared memory.
      
      *   Unify the TZC configuration. There is no need to add a region
      for SCP in Juno; it's enough to simply not allow any access to
      this reserved region. Also set region 0 to provide no access by
      default instead of assuming this is the case.
      
      *   Unify the number of memory map regions required for ARM
      development platforms, although the actual ranges mapped for each
      platform may be different. For the FVP port, this reduces the
      mapped peripheral address space.
      
      These latter changes will only be observed when the platform ports
      are migrated to use the new common platform code in subsequent
      patches.
      
      Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
      b4315306
  18. 12 Feb, 2015 1 commit
    • Soby Mathew's avatar
      Export maximum affinity using PLATFORM_MAX_AFFLVL macro · 8c32bc26
      Soby Mathew authored
      This patch removes the plat_get_max_afflvl() platform API
      and instead replaces it with a platform macro PLATFORM_MAX_AFFLVL.
      This is done because the maximum affinity level for a platform
      is a static value and it is more efficient for it to be defined
      as a platform macro.
      
      NOTE: PLATFORM PORTS NEED TO BE UPDATED ON MERGE OF THIS COMMIT
      
      Fixes ARM-Software/tf-issues#265
      
      Change-Id: I31d89b30c2ccda30d28271154d869060d50df7bf
      8c32bc26