- 22 Mar, 2017 1 commit
-
-
Varun Wadekar authored
This patch adds a device driver for the SMMU hardware block on Tegra186 SoCs. We use the generic ARM SMMU-500 IP block on Tegra186. The driver only supports saving the SMMU settings before entering system suspend. The MC driver and the NS world clients take care of programming their own settings. Change-Id: Iab5a90310ee10f6bc8745451ce50952ab3de7188 Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
- 20 Mar, 2017 2 commits
-
-
Varun Wadekar authored
This patch adds support for the C6 and C7 CPU_SUSPEND states. C6 is an idle state while C7 is a powerdown state. The MCE block takes care of the entry/exit to/from these core power states and hence we call the corresponding MCE handler to process these requests. The NS driver passes the tentative time that the core is expected to stay in this state as part of the power_state parameter, which we store in a per-cpu array and pass it to the MCE block. Change-Id: I152acb11ab93d91fb866da2129b1795843dfa39b Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
The CPU Complex (CCPLEX) Power Manager (Denver MCE, or DMCE) is an offload engine for BPMP to do voltage related sequencing and for hardware requests to be handled in a better latency than BPMP-firmware. There are two interfaces to the MCEs - Abstract Request Interface (ARI) and the traditional NVGINDEX/NVGDATA interface. MCE supports various commands which can be used by CPUs - ARM as well as Denver, for power management and reset functionality. Since the linux kernel is the master for all these scenarios, each MCE command can be issued by a corresponding SMC. These SMCs have been moved to SiP SMC space as they are specific to the Tegra186 SoC. Change-Id: I67bee83d2289a8ab63bc5556e5744e5043803e51 Signed-off-by: Varun Wadekar <vwadekar@nvidia.com> Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-