- 09 Dec, 2015 3 commits
-
-
Yatharth Kochar authored
As of now BL1 loads and execute BL2 based on hard coded information provided in BL1. But due to addition of support for upcoming Firmware Update feature, BL1 now require more flexible approach to load and run different images using information provided by the platform. This patch adds new mechanism to load and execute images based on platform provided image id's. BL1 now queries the platform to fetch the image id of the next image to be loaded and executed. In order to achieve this, a new struct image_desc_t was added which holds the information about images, such as: ep_info and image_info. This patch introduces following platform porting functions: unsigned int bl1_plat_get_next_image_id(void); This is used to identify the next image to be loaded and executed by BL1. struct image_desc *bl1_plat_get_image_desc(unsigned int image_id); This is used to retrieve the image_desc for given image_id. void bl1_plat_set_ep_info(unsigned int image_id, struct entry_point_info *ep_info); This function allows platforms to update ep_info for given image_id. The plat_bl1_common.c file provides default weak implementations of all above functions, the `bl1_plat_get_image_desc()` always return BL2 image descriptor, the `bl1_plat_get_next_image_id()` always return BL2 image ID and `bl1_plat_set_ep_info()` is empty and just returns. These functions gets compiled into all BL1 platforms by default. Platform setup in BL1, using `bl1_platform_setup()`, is now done _after_ the initialization of authentication module. This change provides the opportunity to use authentication while doing the platform setup in BL1. In order to store secure/non-secure context, BL31 uses percpu_data[] to store context pointer for each core. In case of BL1 only the primary CPU will be active hence percpu_data[] is not required to store the context pointer. This patch introduce bl1_cpu_context[] and bl1_cpu_context_ptr[] to store the context and context pointers respectively. It also also re-defines cm_get_context() and cm_set_context() for BL1 in bl1/bl1_context_mgmt.c. BL1 now follows the BL31 pattern of using SP_EL0 for the C runtime environment, to support resuming execution from a previously saved context. NOTE: THE `bl1_plat_set_bl2_ep_info()` PLATFORM PORTING FUNCTION IS NO LONGER CALLED BY BL1 COMMON CODE. PLATFORMS THAT OVERRIDE THIS FUNCTION MAY NEED TO IMPLEMENT `bl1_plat_set_ep_info()` INSTEAD TO MAINTAIN EXISTING BEHAVIOUR. Change-Id: Ieee4c124b951c2e9bc1c1013fa2073221195d881
-
Yatharth Kochar authored
The upcoming Firmware Update feature needs transitioning across Secure/Normal worlds to complete the FWU process and hence requires context management code to perform this task. Currently context management code is part of BL31 stage only. This patch moves the code from (include)/bl31 to (include)/common. Some function declarations/definitions and macros have also moved to different files to help code sharing. Change-Id: I3858b08aecdb76d390765ab2b099f457873f7b0c
-
Yatharth Kochar authored
The primary usage of `RUN_IMAGE` SMC function id, used by BL2 is to make a request to BL1 to execute BL31. But BL2 also uses it as opcode to check if it is allowed to execute which is not the intended usage of `RUN_IMAGE` SMC. This patch removes the usage of `RUN_IMAGE` as opcode passed to next EL to check if it is allowed to execute. Change-Id: I6aebe0415ade3f43401a4c8a323457f032673657
-
- 26 Nov, 2015 3 commits
-
-
Sandrine Bailleux authored
This patch introduces a new build option named COLD_BOOT_SINGLE_CPU, which allows platforms that only release a single CPU out of reset to slightly optimise their cold boot code, both in terms of code size and performance. COLD_BOOT_SINGLE_CPU defaults to 0, which assumes that the platform may release several CPUs out of reset. In this case, the cold reset code needs to coordinate all CPUs via the usual primary/secondary CPU distinction. If a platform guarantees that only a single CPU will ever be released out of reset, there is no need to arbitrate execution ; the notion of primary and secondary CPUs itself no longer exists. Such platforms may set COLD_BOOT_SINGLE_CPU to 1 in order to compile out the primary/secondary CPU identification in the cold reset code. All ARM standard platforms can release several CPUs out of reset so they use COLD_BOOT_SINGLE_CPU=0. However, on CSS platforms like Juno, bringing up more than one CPU at reset should only be attempted when booting an EL3 payload, as it is not fully supported in the normal boot flow. For platforms using COLD_BOOT_SINGLE_CPU=1, the following 2 platform APIs become optional: - plat_secondary_cold_boot_setup(); - plat_is_my_cpu_primary(). The Porting Guide has been updated to reflect that. User Guide updated as well. Change-Id: Ic5b474e61b7aec1377d1e0b6925d17dfc376c46b
-
Sandrine Bailleux authored
This patch modifies the prototype of the bl1_plat_prepare_exit() platform API to pass the address of the entry point info structure received from BL2. The structure contains information that can be useful, depending on the kind of clean up or bookkeeping operations to perform. The weak implementation of this function ignores this argument to preserve platform backwards compatibility. NOTE: THIS PATCH MAY BREAK PLATFORM PORTS THAT ARE RELYING ON THE FORMER PROTOTYPE OF THE BL1_PLAT_PREPARE_EXIT() API. Change-Id: I3fc18f637de06c85719c4ee84c85d6a4572a0fdb
-
Sandrine Bailleux authored
This patch introduces a new build flag, SPIN_ON_BL1_EXIT, which puts an infinite loop in BL1. It is intended to help debugging the post-BL2 phase of the Trusted Firmware by stopping execution in BL1 just before handing over to BL31. At this point, the developer may take control of the target using a debugger. This feature is disabled by default and can be enabled by rebuilding BL1 with SPIN_ON_BL1_EXIT=1. User Guide updated accordingly. Change-Id: I6b6779d5949c9e5571dd371255520ef1ac39685c
-
- 02 Nov, 2015 2 commits
-
-
Sandrine Bailleux authored
- Remove out-dated information about the use of printf() in the function comment. - Make the argument const, as the function doesn't need to modify it. - Rename the function into bl1_print_bl31_ep_info() to make its purpose clearer. Change-Id: I2a9d215a37f0ec11aefce0c5c9e050473b7a6b25
-
Sandrine Bailleux authored
This patch introduces a new function called 'print_entry_point_info' that prints an entry_point_t structure for debugging purposes. As such, it can be used to display the entry point address, SPSR and arguments passed from a firmware image to the next one. This function is now called in the following images transitions: - BL1 to BL2 - BL1 to BL31 - BL31 to the next image (typically BL32 or BL33) The following changes have been introduced: - Fix the output format of the SPSR value : SPSR is a 32-bit value, not a 64-bit one. - Print all arguments values. The entry_point_info_t structure allows to pass up to 8 arguments. In most cases, only the first 2 arguments were printed. print_entry_point_info() now prints all of them as 'VERBOSE' traces. Change-Id: Ieb384bffaa7849e6cb95a01a47c0b7fc2308653a
-
- 28 Oct, 2015 1 commit
-
-
Juan Castillo authored
This patch adds an optional API to the platform port: void plat_error_handler(int err) __dead2; The platform error handler is called when there is a specific error condition after which Trusted Firmware cannot continue. While panic() simply prints the crash report (if enabled) and spins, the platform error handler can be used to hand control over to the platform port so it can perform specific bookeeping or post-error actions (for example, reset the system). This function must not return. The parameter indicates the type of error using standard codes from errno.h. Possible errors reported by the generic code are: -EAUTH : a certificate or image could not be authenticated (when Trusted Board Boot is enabled) -ENOENT : the requested image or certificate could not be found or an IO error was detected -ENOMEM : resources exhausted. Trusted Firmware does not use dynamic memory, so this error is usually an indication of an incorrect array size A default weak implementation of this function has been provided. It simply implements an infinite loop. Change-Id: Iffaf9eee82d037da6caa43b3aed51df555e597a3
-
- 20 Oct, 2015 1 commit
-
-
Juan Castillo authored
This patch adds an optional API to the platform port: void bl1_plat_prepare_exit(void); This function is called prior to exiting BL1 in response to the RUN_IMAGE_SMC request raised by BL2. It should be used to perform platform specific clean up or bookkeeping operations before transferring control to the next image. A weak empty definition of this function has been provided to preserve platform backwards compatibility. Change-Id: Iec09697de5c449ae84601403795cdb6aca166ba1
-
- 19 Oct, 2015 1 commit
-
-
Sandrine Bailleux authored
The AArch64 synchronous exception vector code in BL1 is almost reaching its architectural limit of 32 instructions. This means there is very little space for this code to grow. This patch reduces the size of the exception vector code by moving most of its code in a function to which we branch from SynchronousExceptionA64. Change-Id: Ib35351767a685fb2c2398029d32e54026194f7ed
-
- 02 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
BL2 loads secure runtime code(BL3-1, BL3-2) and hence it has to run in secure world otherwise BL3-1/BL3-2 have to execute from non-secure memory. Hence, This patch removes the change_security_state() call in bl1_run_bl2() and replaces it with an assert to confirm the BL2 as secure. Fixes ARM-software/tf-issues#314 Change-Id: I611b83f5c4090e58a76a2e950b0d797b46df3c29
-
- 25 Jun, 2015 3 commits
-
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-
Juan Castillo authored
This patch adds the authentication framework that will be used as the base to implement Trusted Board Boot in the Trusted Firmware. The framework comprises the following modules: - Image Parser Module (IPM) This module is responsible for interpreting images, check their integrity and extract authentication information from them during Trusted Board Boot. The module currently supports three types of images i.e. raw binaries, X509v3 certificates and any type specific to a platform. An image parser library must be registered for each image type (the only exception is the raw image parser, which is included in the main module by default). Each parser library (if used) must export a structure in a specific linker section which contains function pointers to: 1. Initialize the library 2. Check the integrity of the image type supported by the library 3. Extract authentication information from the image - Cryptographic Module (CM) This module is responsible for verifying digital signatures and hashes. It relies on an external cryptographic library to perform the cryptographic operations. To register a cryptographic library, the library must use the REGISTER_CRYPTO_LIB macro, passing function pointers to: 1. Initialize the library 2. Verify a digital signature 3. Verify a hash Failing to register a cryptographic library will generate a build time error. - Authentication Module (AM) This module provides methods to authenticate an image, like hash comparison or digital signatures. It uses the image parser module to extract authentication parameters, the crypto module to perform cryptographic operations and the Chain of Trust to authenticate the images. The Chain of Trust (CoT) is a data structure that defines the dependencies between images and the authentication methods that must be followed to authenticate an image. The Chain of Trust, when added, must provide a header file named cot_def.h with the following definitions: - COT_MAX_VERIFIED_PARAMS Integer value indicating the maximum number of authentication parameters an image can present. This value will be used by the authentication module to allocate the memory required to load the parameters in the image descriptor. Change-Id: Ied11bd5cd410e1df8767a1df23bb720ce7e58178
-
Juan Castillo authored
The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type 'io_uuid_spec_t' has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --> uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
-
- 19 Jun, 2015 1 commit
-
-
Andrew Thoelke authored
The validation of the caching enable state in bl1_main() was incorrect resulting in the state not being checked. Using the right operator fixes this. Change-Id: I2a99478f420281a1dcdf365d3d4fd8394cd21b51
-
- 04 Jun, 2015 2 commits
-
-
Sandrine Bailleux authored
This patch introduces a new platform build option, called PROGRAMMABLE_RESET_ADDRESS, which tells whether the platform has a programmable or fixed reset vector address. If the reset vector address is fixed then the code relies on the platform_get_entrypoint() mailbox mechanism to figure out where it is supposed to jump. On the other hand, if it is programmable then it is assumed that the platform code will program directly the right address into the RVBAR register (instead of using the mailbox redirection) so the mailbox is ignored in this case. Change-Id: If59c3b11fb1f692976e1d8b96c7e2da0ebfba308
-
Sandrine Bailleux authored
The attempt to run the CPU reset code as soon as possible after reset results in highly complex conditional code relating to the RESET_TO_BL31 option. This patch relaxes this requirement a little. In the BL1, BL3-1 and PSCI entrypoints code, the sequence of operations is now as follows: 1) Detect whether it is a cold or warm boot; 2) For cold boot, detect whether it is the primary or a secondary CPU. This is needed to handle multiple CPUs entering cold reset simultaneously; 3) Run the CPU init code. This patch also abstracts the EL3 registers initialisation done by the BL1, BL3-1 and PSCI entrypoints into common code. This improves code re-use and consolidates the code flows for different types of systems. NOTE: THE FUNCTION plat_secondary_cold_boot() IS NOW EXPECTED TO NEVER RETURN. THIS PATCH FORCES PLATFORM PORTS THAT RELIED ON THE FORMER RETRY LOOP AT THE CALL SITE TO MODIFY THEIR IMPLEMENTATION. OTHERWISE, SECONDARY CPUS WILL PANIC. Change-Id: If5ecd74d75bee700b1bd718d23d7556b8f863546
-
- 27 Apr, 2015 1 commit
-
-
Dan Handley authored
The required platform constant PLATFORM_CACHE_LINE_SIZE is unnecessary since CACHE_WRITEBACK_GRANULE effectively provides the same information. CACHE_WRITEBACK_GRANULE is preferred since this is an architecturally defined term and allows comparison with the corresponding hardware register value. Replace all usage of PLATFORM_CACHE_LINE_SIZE with CACHE_WRITEBACK_GRANULE. Also, add a runtime assert in BL1 to check that the provided CACHE_WRITEBACK_GRANULE matches the value provided in CTR_EL0. Change-Id: If87286be78068424217b9f3689be358356500dcd
-
- 08 Apr, 2015 1 commit
-
-
Kévin Petit authored
In order for the symbol table in the ELF file to contain the size of functions written in assembly, it is necessary to report it to the assembler using the .size directive. To fulfil the above requirements, this patch introduces an 'endfunc' macro which contains the .endfunc and .size directives. It also adds a .func directive to the 'func' assembler macro. The .func/.endfunc have been used so the assembler can fail if endfunc is omitted. Fixes ARM-Software/tf-issues#295 Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc Signed-off-by: Kévin Petit <kevin.petit@arm.com>
-
- 28 Jan, 2015 1 commit
-
-
Juan Castillo authored
This patch adds support to authenticate the BL2 content certificate and image using the authentication module in BL1. The FIP driver has been extended to include the BL2 certificate UUID. FVP and Juno ports include the BL2 certificate FIP file definition. Change-Id: I32680e9bd123c8db4a4193c14448c9b32b0e9325
-
- 22 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch extends the build option `USE_COHERENT_MEMORY` to conditionally remove coherent memory from the memory maps of all boot loader stages. The patch also adds necessary documentation for coherent memory removal in firmware-design, porting and user guides. Fixes ARM-Software/tf-issues#106 Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
-
- 19 Sep, 2014 1 commit
-
-
Juan Castillo authored
This patch fixes the incorrect value of the LENGTH attribute in the linker scripts. This attribute must define the memory size, not the limit address. Fixes ARM-software/tf-issues#252 Change-Id: I328c38b9ec502debe12046a8912d7dfc54610c46
-
- 27 Aug, 2014 1 commit
-
-
Sandrine Bailleux authored
This patch gathers miscellaneous minor fixes to the documentation, and comments in the source code. Change-Id: I631e3dda5abafa2d90f464edaee069a1e58b751b Co-Authored-By: Soby Mathew <soby.mathew@arm.com> Co-Authored-By: Dan Handley <dan.handley@arm.com>
-
- 20 Aug, 2014 1 commit
-
-
Soby Mathew authored
This patch introduces a framework which will allow CPUs to perform implementation defined actions after a CPU reset, during a CPU or cluster power down, and when a crash occurs. CPU specific reset handlers have been implemented in this patch. Other handlers will be implemented in subsequent patches. Also moved cpu_helpers.S to the new directory lib/cpus/aarch64/. Change-Id: I1ca1bade4d101d11a898fb30fea2669f9b37b956
-
- 15 Aug, 2014 1 commit
-
-
Achin Gupta authored
This patch disables routing of external aborts from lower exception levels to EL3 and ensures that a SError interrupt generated as a result of execution in EL3 is taken locally instead of a lower exception level. The SError interrupt is enabled in the TSP code only when the operation has not been directly initiated by the normal world. This is to prevent the possibility of an asynchronous external abort which originated in normal world from being taken when execution is in S-EL1. Fixes ARM-software/tf-issues#153 Change-Id: I157b996c75996d12fd86d27e98bc73dd8bce6cd5
-
- 12 Aug, 2014 2 commits
-
-
Dan Handley authored
Fix the following issues with the console log output: * Make sure the welcome string is the first thing in the log output (during normal boot). * Prefix each message with the BL image name so it's clear which BL the output is coming from. * Ensure all output is wrapped in one of the log output macros so it can be easily compiled out if necessary. Change some of the INFO() messages to VERBOSE(), especially in the TSP. * Create some extra NOTICE() and INFO() messages during cold boot. * Remove all usage of \r in log output. Fixes ARM-software/tf-issues#231 Change-Id: Ib24f7acb36ce64bbba549f204b9cde2dbb46c8a3
-
Juan Castillo authored
Secure ROM at address 0x0000_0000 is defined as FVP_TRUSTED_ROM Secure RAM at address 0x0400_0000 is defined as FVP_TRUSTED_SRAM Secure RAM at address 0x0600_0000 is defined as FVP_TRUSTED_DRAM BLn_BASE and BLn_LIMIT definitions have been updated and are based on these new memory regions. The available memory for each bootloader in the linker script is defined by BLn_BASE and BLn_LIMIT, instead of the complete memory region. TZROM_BASE/SIZE and TZRAM_BASE/SIZE are no longer required as part of the platform porting. FVP common definitions are defined in fvp_def.h while platform_def.h contains exclusively (with a few exceptions) the definitions that are mandatory in the porting guide. Therefore, platform_def.h now includes fvp_def.h instead of the other way around. Porting guide has been updated to reflect these changes. Change-Id: I39a6088eb611fc4a347db0db4b8f1f0417dbab05
-
- 28 Jul, 2014 1 commit
-
-
Achin Gupta authored
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They do not have to be saved and restored either. The M, WXN and optionally the C bit are set in the enable_mmu_elX() function. This is done during both the warm and cold boot paths. Fixes ARM-software/tf-issues#226 Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
-
- 25 Jul, 2014 2 commits
-
-
Juan Castillo authored
Print out Trusted Firmware version at runtime at each BL stage. Message consists of TF version as defined statically in the Makefile (e.g. v0.4), build mode (debug|release) and a customizable build string: 1. By defining BUILD_STRING in command line when building TF 2. Default string is git commit ID 3. Empty if git meta-data is not available Fixes ARM-software/tf-issues#203 Change-Id: I5c5ba438f66ab68810427d76b49c5b9177a957d6
-
Soby Mathew authored
This patch implements a "tf_printf" which supports only the commonly used format specifiers in Trusted Firmware, which uses a lot less stack space than the stdlib printf function. Fixes ARM-software/tf-issues#116 Change-Id: I7dfa1944f4c1e634b3e2d571f49afe02d109a351
-
- 19 Jul, 2014 1 commit
-
-
Achin Gupta authored
This patch reworks the cold boot path across the BL1, BL2, BL3-1 and BL3-2 boot loader stages to not use stacks allocated in coherent memory for early platform setup and enabling the MMU. Stacks allocated in normal memory are used instead. Attributes for stack memory change from nGnRnE when the MMU is disabled to Normal WBWA Inner-shareable when the MMU and data cache are enabled. It is possible for the CPU to read stale stack memory after the MMU is enabled from another CPUs cache. Hence, it is unsafe to turn on the MMU and data cache while using normal stacks when multiple CPUs are a part of the same coherency domain. It is safe to do so in the cold boot path as only the primary cpu executes it. The secondary cpus are in a quiescent state. This patch does not remove the allocation of coherent stack memory. That is done in a subsequent patch. Change-Id: I12c80b7c7ab23506d425c5b3a8a7de693498f830
-
- 01 Jul, 2014 1 commit
-
-
Sandrine Bailleux authored
This concept is no longer required since we now support loading of images at fixed addresses only. The image loader now automatically detects the position of the image inside the current memory layout and updates the layout such that memory fragmentation is minimised. The 'attr' field of the meminfo data structure, which used to hold the bottom/top loading information, has been removed. Also the 'next' field has been removed as it wasn't used anywhere. The 'init_bl2_mem_layout()' function has been moved out of common code and put in BL1-specific code. It has also been renamed into 'bl1_init_bl2_mem_layout'. Fixes ARM-software/tf-issues#109 Change-Id: I3f54642ce7b763d5ee3b047ad0ab59eabbcf916d
-
- 24 Jun, 2014 2 commits
-
-
Juan Castillo authored
Exclude stdlib files because they do not follow kernel code style. Fixes ARM-software/tf-issues#73 Change-Id: I4cfafa38ab436f5ab22c277cb38f884346a267ab
-
Vikram Kanigiri authored
This patch reworks FVP specific code responsible for determining the entry point information for BL3-2 and BL3-3 stages when BL3-1 is configured as the reset handler. Change-Id: Ia661ff0a6a44c7aabb0b6c1684b2e8d3642d11ec
-
- 23 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI and SPDs into two functions: * The first uses entry_point_info to initialize the relevant cpu_context for first entry into a lower exception level on a CPU * The second populates the EL1 and EL2 system registers as needed from the cpu_context to ensure correct entry into the lower EL This patch alters the way that BL3-1 determines which exception level is used when first entering EL1 or EL2 during cold boot - this is now fully determined by the SPSR value in the entry_point_info for BL3-3, as set up by the platform code in BL2 (or otherwise provided to BL3-1). In the situation that EL1 (or svc mode) is selected for a processor that supports EL2, the context management code will now configure all essential EL2 register state to ensure correct execution of EL1. This allows the platform code to run non-secure EL1 payloads directly without requiring a small EL2 stub or OS loader. Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
-
- 23 May, 2014 4 commits
-
-
Dan Handley authored
Some platform porting functions were in BL specific header files. These have been moved to platform.h so that all porting functions are in the same place. The functions are now grouped by BL. Obsolete BL headers files have been removed. Also, the weak declaration of the init_bl2_mem_layout() function has been moved out the header file and into the source file (bl_common.c) using the more succinct #pragma syntax. This mitigates the risk of 2 weak definitions being created and the wrong one being picked up by the compiler. Change-Id: Ib19934939fd755f3e5a5a5bceec88da684308a83
-
Dan Handley authored
Previously, platform.h contained many declarations and definitions used for different purposes. This file has been split so that: * Platform definitions used by common code that must be defined by the platform are now in platform_def.h. The exact include path is exported through $PLAT_INCLUDES in the platform makefile. * Platform definitions specific to the FVP platform are now in /plat/fvp/fvp_def.h. * Platform API declarations specific to the FVP platform are now in /plat/fvp/fvp_private.h. * The remaining platform API declarations that must be ported by each platform are still in platform.h but this file has been moved to /include/plat/common since this can be shared by all platforms. Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
-
Dan Handley authored
Function declarations implicitly have external linkage so do not need the extern keyword. Change-Id: Ia0549786796d8bf5956487e8996450a0b3d79f32
-
Sandrine Bailleux authored
Currently the platform code gets to define the base address of each boot loader image. However, the linker scripts couteract this flexibility by enforcing a fixed overall layout of the different images. For example, they require that the BL3-1 image sits below the BL2 image. Choosing BL3-1 and BL2 base addresses in such a way that it violates this constraint makes the build fail at link-time. This patch requires the platform code to now define a limit address for each image. The linker scripts check that the image fits within these bounds so they don't rely anymore on the position of a given image in regard to the others. Fixes ARM-software/tf-issues#163 Change-Id: I8c108646825da19a6a8dfb091b613e1dd4ae133c
-