- 19 Aug, 2014 5 commits
-
-
Achin Gupta authored
This patch adds APIs to find, save and retrieve the highest affinity level which will enter or exit from the physical OFF state during a PSCI power management operation. The level is stored in per-cpu data. It then reworks the PSCI implementation to perform cache maintenance only when the handler for the highest affinity level to enter/exit the OFF state is called. For example. during a CPU_SUSPEND operation, state management is done prior to calling the affinity level specific handlers. The highest affinity level which will be turned off is determined using the psci_find_max_phys_off_afflvl() API. This level is saved using the psci_set_max_phys_off_afflvl() API. In the code that does generic handling for each level, prior to performing cache maintenance it is first determined if the current affinity level matches the value returned by psci_get_max_phys_off_afflvl(). Cache maintenance is done if the values match. This change allows the last CPU in a cluster to perform cache maintenance independently. Earlier, cache maintenance was started in the level 0 handler and finished in the level 1 handler. This change in approach will facilitate implementation of tf-issues#98. Change-Id: I57233f0a27b3ddd6ddca6deb6a88b234525b0ae6
-
Achin Gupta authored
This patch pulls out state management from the affinity level specific handlers into the top level functions specific to the operation i.e. psci_afflvl_suspend(), psci_afflvl_on() etc. In the power down path this patch will allow an affinity instance at level X to determine the state that an affinity instance at level X+1 will enter before the level specific handlers are called. This will be useful to determine whether a CPU is the last in the cluster during a suspend/off request and so on. Similarly, in the power up path this patch will allow an affinity instance at level X to determine the state that an affinity instance at level X+1 has emerged from, even after the level specific handlers have been called. This will be useful in determining whether a CPU is the first in the cluster during a on/resume request and so on. As before, while powering down, state is updated before the level specific handlers are invoked so that they can perform actions based upon their target state. While powering up, state is updated after the level specific handlers have been invoked so that they can perform actions based upon the state they emerged from. Change-Id: I40fe64cb61bb096c66f88f6d493a1931243cfd37
-
Achin Gupta authored
This patch adds a structure defined by the PSCI service to the per-CPU data array. The structure is used to save the 'power_state' parameter specified during a 'cpu_suspend' call on the current CPU. This parameter was being saved in the cpu node in the PSCI topology tree earlier. The existing API to return the state id specified during a PSCI CPU_SUSPEND call i.e. psci_get_suspend_stateid(mpidr) has been renamed to psci_get_suspend_stateid_by_mpidr(mpidr). The new psci_get_suspend_stateid() API returns the state id of the current cpu. The psci_get_suspend_afflvl() API has been changed to return the target affinity level of the current CPU. This was specified using the 'mpidr' parameter in the old implementation. The behaviour of the get_power_on_target_afflvl() has been tweaked such that traversal of the PSCI topology tree to locate the affinity instance node for the current CPU is done only in the debug build as it is an expensive operation. Change-Id: Iaad49db75abda471f6a82d697ee6e0df554c4caf
-
Juan Castillo authored
This patch adds support for SYSTEM_OFF and SYSTEM_RESET PSCI operations. A platform should export handlers to complete the requested operation. The FVP port exports fvp_system_off() and fvp_system_reset() as an example. If the SPD provides a power management hook for system off and system reset, then the SPD is notified about the corresponding operation so it can do some bookkeeping. The TSPD exports tspd_system_off() and tspd_system_reset() for that purpose. Versatile Express shutdown and reset methods have been removed from the FDT as new PSCI sys_poweroff and sys_reset services have been added. For those kernels that do not support yet these PSCI services (i.e. GICv3 kernel), the original dtsi files have been renamed to *-no_psci.dtsi. Fixes ARM-software/tf-issues#218 Change-Id: Ic8a3bf801db979099ab7029162af041c4e8330c8
-
Dan Handley authored
* Move TSP platform porting functions to new file: include/bl32/tsp/platform_tsp.h. * Create new TSP_IRQ_SEC_PHY_TIMER definition for use by the generic TSP interrupt handling code, instead of depending on the FVP specific definition IRQ_SEC_PHY_TIMER. * Rename TSP platform porting functions from bl32_* to tsp_*, and definitions from BL32_* to TSP_*. * Update generic TSP code to use new platform porting function names and definitions. * Update FVP port accordingly and move all TSP source files to: plat/fvp/tsp/. * Update porting guide with above changes. Note: THIS CHANGE REQUIRES ALL PLATFORM PORTS OF THE TSP TO BE UPDATED Fixes ARM-software/tf-issues#167 Change-Id: Ic0ff8caf72aebb378d378193d2f017599fc6b78f
-
- 15 Aug, 2014 1 commit
-
-
Achin Gupta authored
This patch disables routing of external aborts from lower exception levels to EL3 and ensures that a SError interrupt generated as a result of execution in EL3 is taken locally instead of a lower exception level. The SError interrupt is enabled in the TSP code only when the operation has not been directly initiated by the normal world. This is to prevent the possibility of an asynchronous external abort which originated in normal world from being taken when execution is in S-EL1. Fixes ARM-software/tf-issues#153 Change-Id: I157b996c75996d12fd86d27e98bc73dd8bce6cd5
-
- 01 Aug, 2014 2 commits
-
-
Vikram Kanigiri authored
This patch adds support for BL3-2 initialization by asynchronous method where BL3-1 transfers control to BL3-2 using world switch. After BL3-2 initialization, it transfers control to BL3-3 via SPD service handler. The SPD service handler initializes the CPU context to BL3-3 entrypoint depending on the return function indentifier from TSP initialization. Fixes ARM-software/TF-issues#184 Change-Id: I7b135c2ceeb356d3bb5b6a287932e96ac67c7a34
-
Vikram Kanigiri authored
There is no mechanism which allows the TSPD to specify what SPSR to use when entering BL3-2 instead of BL3-3. This patch divides the responsibility between tspd_setup() and tspd_init() for initializing the TSPD and TSP to support the alternate BL3-2 initialization flow where BL3-1 handsover control to BL3-2 instead of BL3-3. SPSR generated by TSPD for TSP is preserved due the new division of labour which fixes #174. This patch also moves the cpu_context initialization code from tspd_setup() to tspd_init() immediately before entering the TSP. Instead tspd_setup() updates the BL3-2 entrypoint info structure with the state required for initializing the TSP later. Fixes ARM-software/TF-issues#174 Change-Id: Ida0a8a48d466c71d5b07b8c7f2af169b73f96940
-
- 31 Jul, 2014 1 commit
-
-
Soby Mathew authored
This patch further optimizes the EL3 register state stored in cpu_context. The 2 registers which are removed from cpu_context are: * cntfrq_el0 is the system timer register which is writable only in EL3 and it can be programmed during cold/warm boot. Hence it need not be saved to cpu_context. * cptr_el3 controls access to Trace, Floating-point, and Advanced SIMD functionality and it is programmed every time during cold and warm boot. The current BL3-1 implementation does not need to modify the access controls during normal execution and hence they are expected to remain static. Fixes ARM-software/tf-issues#197 Change-Id: I599ceee3b73a7dcfd37069fd41b60e3d397a7b18
-
- 28 Jul, 2014 3 commits
-
-
Juan Castillo authored
Assert a valid security state using the macro sec_state_is_valid(). Replace assert() with panic() in those cases that might arise because of runtime errors and not programming errors. Replace panic() with assert() in those cases that might arise because of programming errors. Fixes ARM-software/tf-issues#96 Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
-
Achin Gupta authored
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They do not have to be saved and restored either. The M, WXN and optionally the C bit are set in the enable_mmu_elX() function. This is done during both the warm and cold boot paths. Fixes ARM-software/tf-issues#226 Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
-
Achin Gupta authored
This patch removes the allocation of memory for coherent stacks, associated accessor function and some dead code which called the accessor function. It also updates the porting guide to remove the concept and the motivation behind using stacks allocated in coherent memory. Fixes ARM-software/tf-issues#198 Change-Id: I00ff9a04f693a03df3627ba39727e3497263fc38
-
- 19 Jul, 2014 2 commits
-
-
Achin Gupta authored
This patch uses stacks allocated in normal memory to enable the MMU early in the warm boot path thus removing the dependency on stacks allocated in coherent memory. Necessary cache and stack maintenance is performed when a cpu is being powered down and up. This avoids any coherency issues that can arise from reading speculatively fetched stale stack memory from another CPUs cache. These changes affect the warm boot path in both BL3-1 and BL3-2. The EL3 system registers responsible for preserving the MMU state are not saved and restored any longer. Static values are used to program these system registers when a cpu is powered on or resumed from suspend. Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
-
Achin Gupta authored
This patch adds a 'flags' parameter to each exception level specific function responsible for enabling the MMU. At present only a single flag which indicates whether the data cache should also be enabled is implemented. Subsequent patches will use this flag when enabling the MMU in the warm boot paths. Change-Id: I0eafae1e678c9ecc604e680851093f1680e9cefa
-
- 25 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Many of the interfaces internal to PSCI pass the current CPU MPIDR_EL1 value from function to function. This is not required, and with inline access to the system registers is less efficient than requiring the code to read that register whenever required. This patch remove the mpidr parameter from the affected interfaces and reduces code in FVP BL3-1 size by 160 bytes. Change-Id: I16120a7c6944de37232016d7e109976540775602
-
- 24 Jun, 2014 1 commit
-
-
Juan Castillo authored
Exclude stdlib files because they do not follow kernel code style. Fixes ARM-software/tf-issues#73 Change-Id: I4cfafa38ab436f5ab22c277cb38f884346a267ab
-
- 23 Jun, 2014 4 commits
-
-
Andrew Thoelke authored
The bakery lock code currently expects the calling code to pass the MPIDR_EL1 of the current CPU. This is not always done correctly. Also the change to provide inline access to system registers makes it more efficient for the bakery lock code to obtain the MPIDR_EL1 directly. This change removes the mpidr parameter from the bakery lock interface, and results in a code reduction of 160 bytes for the ARM FVP port. Fixes ARM-software/tf-issues#213 Change-Id: I7ec7bd117bcc9794a0d948990fcf3336a367d543
-
Andrew Thoelke authored
The array of affinity nodes is currently allocated for 32 entries with the PSCI_NUM_AFFS value defined in psci.h. This is not enough for large systems, and will substantially over allocate the array for small systems. This patch introduces an optional platform definition PLATFORM_NUM_AFFS to platform_def.h. If defined this value is used for PSCI_NUM_AFFS, otherwise a value of two times the number of CPU cores is used. The FVP port defines PLATFORM_NUM_AFFS to be 10 which saves nearly 1.5KB of memory. Fixes ARM-software/tf-issues#192 Change-Id: I68e30ac950de88cfbd02982ba882a18fb69c1445
-
Andrew Thoelke authored
psci_suspend_context is an array of cache-line aligned structures containing the single power_state integer per cpu. This array is the only structure indexed by the aff_map_node.data integer. This patch saves 2KB of BL3-1 memory by placing the CPU power_state value directly in the aff_map_node structure. As a result, this value is now never cached and the cache clean when writing the value is no longer required. Fixes ARM-software/tf-issues#195 Change-Id: Ib4c70c8f79eed295ea541e7827977a588a19ef9b
-
Andrew Thoelke authored
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI and SPDs into two functions: * The first uses entry_point_info to initialize the relevant cpu_context for first entry into a lower exception level on a CPU * The second populates the EL1 and EL2 system registers as needed from the cpu_context to ensure correct entry into the lower EL This patch alters the way that BL3-1 determines which exception level is used when first entering EL1 or EL2 during cold boot - this is now fully determined by the SPSR value in the entry_point_info for BL3-3, as set up by the platform code in BL2 (or otherwise provided to BL3-1). In the situation that EL1 (or svc mode) is selected for a processor that supports EL2, the context management code will now configure all essential EL2 register state to ensure correct execution of EL1. This allows the platform code to run non-secure EL1 payloads directly without requiring a small EL2 stub or OS loader. Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
-
- 17 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
The crash reporting support and early initialisation of the cpu_data allow the runtime_exception vectors to be used from the start in BL3-1, removing the need for the additional early_exception vectors and 2KB of code from BL3-1. Change-Id: I5f8997dabbaafd8935a7455910b7db174a25d871
-
- 16 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
This patch prepares the per-cpu pointer cache for wider use by: * renaming the structure to cpu_data and placing in new header * providing accessors for this CPU, or other CPUs * splitting the initialization of the TPIDR pointer from the initialization of the cpu_data content * moving the crash stack initialization to a crash stack function * setting the TPIDR pointer very early during boot Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
-
- 11 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
All callers of cm_get_context() pass the calling CPU MPIDR to the function. Providing a specialised version for the current CPU results in a reduction in code size and better readability. The current function has been renamed to cm_get_context_by_mpidr() and the existing name is now used for the current-CPU version. The same treatment has been done to cm_set_context(), although only both forms are used at present in the PSCI and TSPD code. Change-Id: I91cb0c2f7bfcb950a045dbd9ff7595751c0c0ffb
-
- 10 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
The SMC handler for PSCI was not correctly handling calls from secure states, or from AArch32. This patch completes the handler implementation to correctly detect secure callers and to clear the top bits in parameters from AArch32 callers. The patch also reorganises the switch statement to separate SMC64 and SMC32 function IDs which allows the compiler to generate much smaller code for the function. Change-Id: I36b1ac81fb14253d257255d0477771d54fab0d11
-
- 29 May, 2014 1 commit
-
-
Soby Mathew authored
This patch fixes the compilation issue for trusted firmware when the IMF_READ_INTERRUPT_ID is enabled. Change-Id: I94ab613b9bc96a7c1935796c674dc42246aaafee
-
- 27 May, 2014 2 commits
-
-
Dan Handley authored
Rename the ic_* platform porting functions to plat_ic_* to be consistent with the other functions in platform.h. Also rename bl31_get_next_image_info() to bl31_plat_get_next_image_ep_info() and remove the duplicate declaration in bl31.h. Change-Id: I4851842069d3cff14c0a468daacc0a891a7ede84
-
Soby Mathew authored
This patch fixes a missed return and code alignment issues in TSP_FID_RESUME handling. Change-Id: Icf8aeb76dfd6898745653ce039e3bac45e0a9b3a
-
- 23 May, 2014 6 commits
-
-
Dan Handley authored
Previously, the enable_mmu_elX() functions were implicitly part of the platform porting layer since they were included by generic code. These functions have been placed behind 2 new platform functions, bl31_plat_enable_mmu() and bl32_plat_enable_mmu(). These are weakly defined so that they can be optionally overridden by platform ports. Also, the enable_mmu_elX() functions have been moved to lib/aarch64/xlat_tables.c for optional re-use by platform ports. These functions are tightly coupled with the translation table initialization code. Fixes ARM-software/tf-issues#152 Change-Id: I0a2251ce76acfa3c27541f832a9efaa49135cc1c
-
Dan Handley authored
Previously, platform.h contained many declarations and definitions used for different purposes. This file has been split so that: * Platform definitions used by common code that must be defined by the platform are now in platform_def.h. The exact include path is exported through $PLAT_INCLUDES in the platform makefile. * Platform definitions specific to the FVP platform are now in /plat/fvp/fvp_def.h. * Platform API declarations specific to the FVP platform are now in /plat/fvp/fvp_private.h. * The remaining platform API declarations that must be ported by each platform are still in platform.h but this file has been moved to /include/plat/common since this can be shared by all platforms. Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
-
Dan Handley authored
Some data variables were declared but not used. These have been removed. Change-Id: I038632af3c32d88984cd25b886c43ff763269bf9
-
Dan Handley authored
Function declarations implicitly have external linkage so do not need the extern keyword. Change-Id: Ia0549786796d8bf5956487e8996450a0b3d79f32
-
Andrew Thoelke authored
The TSP has a number of entrypoints used by the TSP on different occasions. These were provided to the TSPD as a table of function pointers, and required the TSPD to read the entry in the table, which is in TSP memory, in order to program the exception return address. Ideally, the TSPD has no access to the TSP memory. This patch changes the table of function pointers into a vector table of single instruction entrypoints. This allows the TSPD to calculate the entrypoint address instead of read it. Fixes ARM-software/tf-issues#160 Change-Id: Iec6e055d537ade78a45799fbc6f43765a4725ad3
-
Soby Mathew authored
Implements support for Non Secure Interrupts preempting the Standard SMC call in EL1. Whenever an IRQ is trapped in the Secure world we securely handover to the Normal world to process the interrupt. The normal world then issues "resume" smc call to resume the previous interrupted SMC call. Fixes ARM-software/tf-issues#105 Change-Id: I72b760617dee27438754cdfc9fe9bcf4cc024858
-
- 22 May, 2014 7 commits
-
-
Achin Gupta authored
This patch adds support in the TSPD for registering a handler for S-EL1 interrupts. This handler ferries the interrupts generated in the non-secure state to the TSP at 'tsp_fiq_entry'. Support has been added to the smc handler to resume execution in the non-secure state once interrupt handling has been completed by the TSP. There is also support for resuming execution in the normal world if the TSP receives a EL3 interrupt. This code is currently unused. Change-Id: I816732595a2635e299572965179f11aa0bf93b69
-
Achin Gupta authored
This patch adds support in the TSP to program the secure physical generic timer to generate a EL-1 interrupt every half second. It also adds support for maintaining the timer state across power management operations. The TSPD ensures that S-EL1 can access the timer by programming the SCR_EL3.ST bit. This patch does not actually enable the timer. This will be done in a subsequent patch once the complete framework for handling S-EL1 interrupts is in place. Change-Id: I1b3985cfb50262f60824be3a51c6314ce90571bc
-
Achin Gupta authored
This patch adds a common handler for FIQ and IRQ exceptions in the BL3-1 runtime exception vector table. This function determines the interrupt type and calls its handler. A crash is reported if an inconsistency in the interrupt management framework is detected. In the event of a spurious interrupt, execution resumes from the instruction where the interrupt was generated. This patch also removes 'cm_macros.S' as its contents have been moved to 'runtime_exceptions.S' Change-Id: I3c85ecf8eaf43a3fac429b119ed0bd706d2e2093
-
Achin Gupta authored
This patch adds an API to write to any bit in the SCR_EL3 member of the 'cpu_context' structure of the current CPU for a specified security state. This API will be used in subsequent patches which introduce interrupt management in EL3 to specify the interrupt routing model when execution is not in EL3. It also renames the cm_set_el3_elr() function to cm_set_elr_el3() which is more in line with the system register name being targeted by the API. Change-Id: I310fa7d8f827ad3f350325eca2fb28cb350a85ed
-
Achin Gupta authored
This patch lays the foundation for using the per-cpu 'state' field in the 'tsp_context' structure for other flags apart from the power state of the TSP. It allocates 2 bits for the power state, introduces the necessary macros to manipulate the power state in the 'state' field and accordingly reworks all use of the TSP_STATE_* states. It also allocates a flag bit to determine if the TSP is handling a standard SMC. If this flag is set then the TSP was interrupted due to non-secure or EL3 interupt depending upon the chosen routing model. Macros to get, set and clear this flag have been added as well. This flag will be used by subsequent patches. Change-Id: Ic6ee80bd5895812c83b35189cf2c3be70a9024a6
-
Vikram Kanigiri authored
The issues addressed in this patch are: 1. Remove meminfo_t from the common interfaces in BL3-x, expecting that platform code will find a suitable mechanism to determine the memory extents in these images and provide it to the BL3-x images. 2. Remove meminfo_t and bl31_plat_params_t from all FVP BL3-x code as the images use link-time information to determine memory extents. meminfo_t is still used by common interface in BL1/BL2 for loading images Change-Id: I4e825ebf6f515b59d84dc2bdddf6edbf15e2d60f
-
Vikram Kanigiri authored
This patch is based on spec published at https://github.com/ARM-software/tf-issues/issues/133 It rearranges the bl31_args struct into bl31_params and bl31_plat_params which provide the information needed for Trusted firmware and platform specific data via x0 and x1 On the FVP platform BL3-1 params and BL3-1 plat params and its constituents are stored at the start of TZDRAM. The information about memory availability and size for BL3-1, BL3-2 and BL3-3 is moved into platform specific data. Change-Id: I8b32057a3d0dd3968ea26c2541a0714177820da9
-