- 25 Mar, 2021 1 commit
-
-
Andre Przywara authored
The upcoming refactoring to support the new H616 SoCs will push the A64 build over the edge, by using more than the 48KB of SRAM available. To reduce the code size, set some libfdt options that aim to reduce sanity checks (for saving code space): - ASSUME_LATEST: only allow v17 DTBs (as created by dtc) - ASSUME_NO_ROLLBACK: don't prepare for failed DT additions - ASSUME_LIBFDT_ORDER: assume sane ordering, as done by dtc Change-Id: I12c93ec09e7587c5ae71e54947f817c32ce5fd6d Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
- 14 Dec, 2020 4 commits
-
-
Samuel Holland authored
This gives the rich OS the flexibility to choose between I2C and RSB communication. Since a runtime address can only be assigned once after entering RSB mode, it also lets the rich OS choose any runtime address. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Id49c124c5e925985fc31c0ba38c7fb6c941aafa8
-
Samuel Holland authored
None of the other drivers (Linux, U-Boot, Crust) need to lower the bus clock frequency to switch the PMIC to RSB mode. That logic is not needed here, either. The hardware takes care of running this transaction at the correct bus frequency. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Idcfe933df4da75d5fd5a4f3e362da40ac26bdad1
-
Samuel Holland authored
The H6 has a "secure port controller" similar to the A64/H5, but with more ports and a different register layout. Split the platform-specific parts out into a header, and add the missing MMIO base address. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: I3703868bc595459ecf9568b9d1605cb1be014bf5
-
Samuel Holland authored
H6 has a reorganized R_PRCM compared to A64/H5, with the security switch at a different offset. Until now, we did not notice, because the switch has no effect unless the secure mode e-fuse is blown. Since we are adding more platform-specific CCU registers, move them to their own header, and out of the memory map (where they do not belong). Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Ie77476db0515080954eaa2e32bf6c3de657cda86
-
- 13 Feb, 2020 1 commit
-
-
Samuel Holland authored
The ARISC vector area consists of 0x4000 bytes before the beginning of usable SRAM. Still, it is technically a part of SRAM A2, so include it in the memory definition. This avoids the confusing practice of subtracting from the beginning of the SRAM region when referencing the ARISC vectors. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Iae89e01aeab93560159562692e03e88306e2a1bf
-
- 14 Dec, 2019 10 commits
-
-
Samuel Holland authored
Chip ID checking and poweroff work just like they did before. Regulators are now enabled just like on A64/H5. This changes the signatures of the low-level register read/write functions to match the interface expected by the common driver. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: I14d63d171a094fa1375904928270fa3e21761646
-
Samuel Holland authored
Previously, the A64/H5 and H6 platforms' PMIC setup code was entirely independent. However, some H6 boards also need early regulator setup. Most of the register interface and all of the device tree traversal code can be reused between the AXP803 and AXP805. The main difference is the hardware bus interface, so that part is left to the platforms. The remainder is moved into a driver. I factored out the bits that were obviously specific to the AXP803; additional changes for compatibility with other PMICs can be made as needed. The only functional change is that rsb_init() now checks the PMIC's chip ID register against the expected value. This was already being done in the H6 version of the code. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Icdcf9edd6565f78cccc503922405129ac27e08a2
-
Samuel Holland authored
This simplifies the code a bit. Verified to produce the same binary. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Ie1ec1ce2ea39c46525840906826c90a8a7eff287
-
Samuel Holland authored
As of a561e41b ("allwinner: power: add enable switches for DCDC1/5") there are no longer regulators without an enable register provided. Since it seems reasonable that this will continue to be the case, drop the check. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Icd7ec26fc6450d053e6e6d855fc16229b1d65a39
-
Samuel Holland authored
should_enable_regulator() is already checked in the regulators subnode loop before setup_regulator() is called, so there's no need to check it again here. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Idb8b8a6e435246f4fb226bc84813449d80a0a977
-
Samuel Holland authored
These are used by the PMIC setup code, which runs during BL31 initialization, and the PSCI shutdown code, also a part of BL31. They can't be needed before BL31, or it wouldn't be possible to boot. Allwinner platforms don't generally build anything but BL31 anyway, but this change improves clarity and consistency with allwinner-common.mk. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: I24f1d9ca8b4256e44badf5218d04d8690082babf
-
Samuel Holland authored
The function is only used in this file, and it doesn't make sense for it to be used anywhere else. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Iab18f082911edcdbc37ceeaff8c512be68e0cb0f
-
Samuel Holland authored
The action of last resort isn't going to change between SoCs. This moves that code back to the PSCI implementation, where it more obviously matches the code in sunxi_system_reset(). The two error messages say essentially the same thing anyway. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: I62ac35fdb5ed78a016e9b18281416f1dcea38a4a
-
Samuel Holland authored
- Check the return value from sunxi_init_platform_r_twi(). - Print the PMIC banner before doing anything that might fail. - Remove double prefixes in error messages. - Consistently omit the trailing period. - No need to print the unknown SoC's ID, since we already did that earlier in bl31_platform_setup(). - On the other hand, do print the ID of the unknown PMIC. - Try to keep the messages concise, as the large string size in these files was causing the firmware to spill into the next page. - Downgrade the banner from NOTICE to INFO. It's purely informational, and people should be using debug builds on untested hardware anyway. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: Ib909408a5fdaebe05470fbce48d245dd0bf040eb
-
Samuel Holland authored
Ensure that the default (zero) value represents the case where we take no action. Previously, if a PLAT=sun50i_a64 build was booted on an unknown SoC ID, it would be treated as an H5 at shutdown. This removes some duplicate code and fixes error propagation on H6. Signed-off-by: Samuel Holland <samuel@sholland.org> Change-Id: I4e51d8a43a56eccb0d8088593cb9908e52e782bc
-
- 26 Nov, 2019 1 commit
-
-
Stefan Mavrodiev authored
A64-OLinuXino family boards (maybe others too) uses PG for USB vbus enable/disable. However PG is supplied by DLDO4, which is not present in the list of known regulators. This patch adds DLD04 to it. Signed-off-by: Stefan Mavrodiev <stefan@olimex.com> Change-Id: I31d3bb3e0004ccf5b282d08b530ee44979da0466
-
- 08 Mar, 2019 1 commit
-
-
Andre Przywara authored
So far the DT node describing the AXP803 PMIC used in many Allwinner A64 boards had only one subnode, so our code just entering the first subnode to find all regulators worked fine. However recent DT updates in the Linux kernel add more subnodes *before* that, so we need to make sure to explicitly enter the "regulators" subnode to find the information we are after. Improve some DT node parsing error handling on the way. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
- 18 Feb, 2019 1 commit
-
-
Samuel Holland authored
This maximizes the amount of data protected by the MMU. Signed-off-by: Samuel Holland <samuel@sholland.org>
-
- 04 Jan, 2019 1 commit
-
-
Antonio Nino Diaz authored
Enforce full include path for includes. Deprecate old paths. The following folders inside include/lib have been left unchanged: - include/lib/cpus/${ARCH} - include/lib/el3_runtime/${ARCH} The reason for this change is that having a global namespace for includes isn't a good idea. It defeats one of the advantages of having folders and it introduces problems that are sometimes subtle (because you may not know the header you are actually including if there are two of them). For example, this patch had to be created because two headers were called the same way: e0ea0928 ("Fix gpio includes of mt8173 platform to avoid collision."). More recently, this patch has had similar problems: 46f9b2c3 ("drivers: add tzc380 support"). This problem was introduced in commit 4ecca339 ("Move include and source files to logical locations"). At that time, there weren't too many headers so it wasn't a real issue. However, time has shown that this creates problems. Platforms that want to preserve the way they include headers may add the removed paths to PLAT_INCLUDES, but this is discouraged. Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 14 Nov, 2018 3 commits
-
-
Andre Przywara authored
The DCDC6 power rail is typically driving VDD_SYS in the SoC, so it is on by default and uses the default voltage. As there seems to be at least on board using a different voltage, add the rail to the list of known voltage lines, so we can setup the right voltage as early as possible. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
The DCDC1 and DCDC5 power rails didn't specify the enable bits. This isn't critical, since those rails are on by default (and are needed for every board), but it is inconsistent. Add the respective enable bits for those two rails. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
The DRIVEVBUS pin setup was broken in two ways: - To configure this pin as an output pin, one has to *clear* the bit in register 0x8f. It is 0 by default, but rebooting from Linux might have left this bit set. - Doing this just configures the pin as an output pin, but doesn't actually drive power to it. This is done via bit 2 in register 0x30. Fix the routine to both properly configure the pin and drive power to it. Add an axp_clrsetbits() helper on the way. Now this isn't really perfect, still: We only need to setup the PMIC power rails that are needed for U-Boot. DRIVEVBUS typically controls the VBUS voltage for the host function of an USB-OTG port, something we typically don't want in U-Boot (fastboot, using the USB *device* functionality, is much more common). The BananaPi-M64 uses the regulator in this way, but the Remix Mini PC actually controls the power of both its USB ports via this line. Technically we should differentiate here: if DRIVEVBUS controls a microUSB-B socket, the power should stay off, any host-type A sockets should be supplied, though. For now just always enable the power, that shouldn't really hurt the USB-OTG functionality anyway. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
- 08 Nov, 2018 1 commit
-
-
Antonio Nino Diaz authored
All identifiers, regardless of use, that start with two underscores are reserved. This means they can't be used in header guards. The style that this project is now to use the full name of the file in capital letters followed by 'H'. For example, for a file called "uart_example.h", the header guard is UART_EXAMPLE_H. The exceptions are files that are imported from other projects: - CryptoCell driver - dt-bindings folders - zlib headers Change-Id: I50561bf6c88b491ec440d0c8385c74650f3c106e Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 20 Oct, 2018 12 commits
-
-
Andre Przywara authored
PSCI requires a core to turn itself off, which we can't do properly by just executing an algorithm on that very core. As a consequence we just put a core into WFI on CPU_OFF right now. To fix this let's task the "arisc" management processor (an OpenRISC core) with that task of asserting reset and turning off the core's power domain. We use a handcrafted sequence of OpenRISC instructions to achieve this, and hand this data over to the new sunxi_execute_arisc_code() routine. The commented source code for this routine is provided in a separate file, but the ATF code contains the already encoded instructions as data. The H6 uses the same algorithm, but differs in the MMIO addresses, so provide a SoC (family) specific copy of that code. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
There are reports that activating the DC1SW before certain other regulators leads to the PMIC overheating and consequently shutting down. To avoid this situation, delay the activation of the DC1SW line until the very end, so those other lines are always activated earlier. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
Based on the just introduced PMIC FDT framework, we check the DT for more voltage rails that need to be setup early: - DCDC1 is typically the main board power rail, used for I/O pins, for instance. The PMIC's default is 3.0V, but 3.3V is what most boards use, so this needs to be adjusted as soon as possible. - DCDC5 is supposed to be connected to the DRAM. The AXP has some configurable reset voltage, but some boards get that wrong, so we better set up this here to avoid over- or under-volting. - DLDO1,2,3 and FLDO1 mostly drive some graphics related IP, some boards need this to be up to enable HDMI or the LCD screen, so we get screen output in U-Boot. To get the right setup, but still being flexible, we query the DT for the required voltage and whether that regulator is actually used. That gives us some robust default setup U-Boot is happy with. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
Now that we have a pointer to the device tree blob, let's use that to do some initial setup of the PMIC: - We scan the DT for the compatible string to find the PMIC node. - We switch the N_VBUSEN pin if the DT property tells us so. - We scan over all regulator subnodes, and switch DC1SW if there is at least one other node referencing it (judging by the existence of a phandle property in that subnode). This is just the first part of the setup, a follow up patch will setup voltages. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
For Allwinner boards we now use some heuritistics to find a preloaded .dtb file. Pass this address on to the PMIC setup routine, so that it can use the information contained therein to setup some initial power rails. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
Boards with the Allwinner A64 SoC are mostly paired with an AXP803 PMIC, which allows to programmatically power down the board. Use the newly introduced RSB driver to detect and program the PMIC on boot, then later to turn off the main voltage rails when receiving a PSCI SYSTEM_POWER_OFF command. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
Allwinner produces reference board designs, which apparently most board vendors copy from. So every H5 board I checked uses regulators which are controlled by the same PortL GPIO pins to power the ARM CPU cores, the DRAM and the I/O ports. Add a SoC specific power down routine, which turns those regulators off when ATF detects running on an H5 SoC and the rich OS triggers a SYSTEM_POWEROFF PSCI call. NOTE: It sounds very tempting to turn the CPU power off, but this is not working as expected, instead the system is rebooting. Most probably this is due to VCC-SYS also being controlled by the same GPIO line, and turning this off requires an elaborate and not fully understood setup. Apparently not even Allwinner reference code is turning this regulator off. So for now we refrain to pulling down PL8, the power consumption is quite low anyway, so we are as close to poweroff as reasonably possible. Many thanks to Samuel for doing some research on that topic. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
So far we have a sunxi_private.h header file in the common code directory. This holds the prototypes of various functions we share in *common* code. However we will need some of those in the platform specific code parts as well, and want to introduce new functions shared across the whole platform port. So move the sunxi_private.h file into the common/include directory, so that it becomes visible to all parts of the platform code. Fix up the existing #includes and add missing ones, also add the sunxi_read_soc_id() prototype here. This will be used in follow up patches. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
Some boards don't have a PMIC, so they can't easily turn their power off. To cover those boards anyway, let's turn off as many devices and clocks as possible, so that the power consumption is reduced. Then halt the last core, as before. This will later be extended with proper PMIC support for supported boards. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
In the BL31 platform setup we read the Allwinner SoC ID to identify the chip and print its name. In addition to that we will need to differentiate the power setup between the SoCs, to pass on the SoC ID to the PMIC setup routine. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
At the moment we map as much of the DRAM into EL3 as possible, however we actually don't use it. The only exception is the secure DRAM for BL32 (if that is configured). To decrease the memory footprint of ATF, we save on some page tables by reducing the memory mapping to the actually required regions: SRAM, device MMIO, secure DRAM and U-Boot (to be used later). This introduces a non-identity mapping for the DRAM regions. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
Andre Przywara authored
For the two different platforms we support in the Allwinner port we mostly rely on header files covering the differences. This leads to the platform.mk files in the respective directories to be almost identical. To avoid further divergence and make sure that one platform doesn't break accidentally, let's create a shared allwinner-common.mk file and include that from the platform directory. Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
- 28 Sep, 2018 1 commit
-
-
Antonio Nino Diaz authored
Change-Id: I206478597dd9855d3fe1577e7e2c0fe6d2af1cc5 Tested-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 07 Sep, 2018 2 commits
-
-
Icenowy Zheng authored
The AXP805 PMIC used with H6 is capable of shutting down the system. Add support for using it to shut down the system power. The original placeholder power off code is moved to A64 code, as it's still TODO to implement PMIC operations for A64. Signed-off-by: Icenowy Zheng <icenowy@aosc.io>
-
Icenowy Zheng authored
As the ATF may need to do some power initialization on Allwinner platform with AXP PMICs, call the PMIC setup code in BL31. Stub of PMIC setup code is added, to prevent undefined reference. Signed-off-by: Icenowy Zheng <icenowy@aosc.io>
-
- 28 Jun, 2018 1 commit
-
-
Andre Przywara authored
The relative VER_REG *offset* is the same across all known SoCs, so we can define this offset near it's user. Remove it from the memory map. Reported-by: Samuel Holland <samuel@sholland.org> Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-