- 04 Jan, 2019 1 commit
-
-
Antonio Nino Diaz authored
Enforce full include path for includes. Deprecate old paths. The following folders inside include/lib have been left unchanged: - include/lib/cpus/${ARCH} - include/lib/el3_runtime/${ARCH} The reason for this change is that having a global namespace for includes isn't a good idea. It defeats one of the advantages of having folders and it introduces problems that are sometimes subtle (because you may not know the header you are actually including if there are two of them). For example, this patch had to be created because two headers were called the same way: e0ea0928 ("Fix gpio includes of mt8173 platform to avoid collision."). More recently, this patch has had similar problems: 46f9b2c3 ("drivers: add tzc380 support"). This problem was introduced in commit 4ecca339 ("Move include and source files to logical locations"). At that time, there weren't too many headers so it wasn't a real issue. However, time has shown that this creates problems. Platforms that want to preserve the way they include headers may add the removed paths to PLAT_INCLUDES, but this is discouraged. Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 01 Nov, 2018 1 commit
-
-
Antonio Nino Diaz authored
The macro EL_IMPLEMENTED() has been deprecated in favour of the new function el_implemented(). Change-Id: Ic9b1b81480b5e019b50a050e8c1a199991bf0ca9 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 11 Jul, 2018 1 commit
-
-
Roberto Vargas authored
Check_vector_size checks if the size of the vector fits in the size reserved for it. This check creates problems in the Clang assembler. A new macro, end_vector_entry, is added and check_vector_size is deprecated. This new macro fills the current exception vector until the next exception vector. If the size of the current vector is bigger than 32 instructions then it gives an error. Change-Id: Ie8545cf1003a1e31656a1018dd6b4c28a4eaf671 Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
-
- 21 Mar, 2018 1 commit
-
-
Antonio Nino Diaz authored
When the source code says 'SMCC' it is talking about the SMC Calling Convention. The correct acronym is SMCCC. This affects a few definitions and file names. Some files have been renamed (smcc.h, smcc_helpers.h and smcc_macros.S) but the old files have been kept for compatibility, they include the new ones with an ERROR_DEPRECATED guard. Change-Id: I78f94052a502436fdd97ca32c0fe86bd58173f2f Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 21 Feb, 2018 1 commit
-
-
Antonio Nino Diaz authored
After executing a TLBI a DSB is needed to ensure completion of the TLBI. rk3328: The MMU is allowed to load TLB entries for as long as it is enabled. Because of this, the correct place to execute a TLBI is right after disabling the MMU. Change-Id: I8280f248d10b49a8c354a4ccbdc8f8345ac4c170 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 12 Jul, 2017 1 commit
-
-
Isla Mitchell authored
This fix modifies the order of system includes to meet the ARM TF coding standard. There are some exceptions in order to retain header groupings, minimise changes to imported headers, and where there are headers within the #if and #ifndef statements. Change-Id: I65085a142ba6a83792b26efb47df1329153f1624 Signed-off-by: Isla Mitchell <isla.mitchell@arm.com>
-
- 23 Jun, 2017 1 commit
-
-
Etienne Carriere authored
This change avoids warnings when setting -Wmissing-prototypes or when using sparse tool. Signed-off-by: Yann Gautier <yann.gautier@st.com> Signed-off-by: Etienne Carriere <etienne.carriere@st.com>
-
- 21 Jun, 2017 1 commit
-
-
David Cunado authored
This patch updates the el3_arch_init_common macro so that it fully initialises essential control registers rather then relying on hardware to set the reset values. The context management functions are also updated to fully initialise the appropriate control registers when initialising the non-secure and secure context structures and when preparing to leave EL3 for a lower EL. This gives better alignement with the ARM ARM which states that software must initialise RES0 and RES1 fields with 0 / 1. This patch also corrects the following typos: "NASCR definitions" -> "NSACR definitions" Change-Id: Ia8940b8351dc27bc09e2138b011e249655041cfc Signed-off-by: David Cunado <david.cunado@arm.com>
-
- 03 May, 2017 1 commit
-
-
dp-arm authored
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 02 May, 2017 1 commit
-
-
Jeenu Viswambharan authored
Replace all instances of checks with the new macro. Change-Id: I0eec39b9376475a1a9707a3115de9d36f88f8a2a Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 05 Dec, 2016 1 commit
-
-
Jeenu Viswambharan authored
There are many instances in ARM Trusted Firmware where control is transferred to functions from which return isn't expected. Such jumps are made using 'bl' instruction to provide the callee with the location from which it was jumped to. Additionally, debuggers infer the caller by examining where 'lr' register points to. If a 'bl' of the nature described above falls at the end of an assembly function, 'lr' will be left pointing to a location outside of the function range. This misleads the debugger back trace. This patch defines a 'no_ret' macro to be used when jumping to functions from which return isn't expected. The macro ensures to use 'bl' instruction for the jump, and also, for debug builds, places a 'nop' instruction immediately thereafter (unless instructed otherwise) so as to leave 'lr' pointing within the function range. Change-Id: Ib34c69fc09197cfd57bc06e147cc8252910e01b0 Co-authored-by: Douglas Raillard <douglas.raillard@arm.com> Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 21 Sep, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds generic changes in BL1 to support AArch32 state. New AArch32 specific assembly/C files are introduced and some files are moved to AArch32/64 specific folders. BL1 for AArch64 is refactored but functionally identical. BL1 executes in Secure Monitor mode in AArch32 state. NOTE: BL1 in AArch32 state ONLY handles BL1_RUN_IMAGE SMC. Change-Id: I6e2296374c7efbf3cf2aa1a0ce8de0732d8c98a5
-
- 22 Aug, 2016 1 commit
-
-
Yatharth Kochar authored
This patch removes the tight loop that calls `plat_report_exception` in unhandled exceptions in AArch64 state. The new behaviour is to call the `plat_report_exception` only once followed by call to `plat_panic_handler`. This allows platforms to take platform-specific action when there is an unhandled exception, instead of always spinning in a tight loop. Note: This is a subtle break in behaviour for platforms that expect `plat_report_exception` to be continuously executed when there is an unhandled exception. Change-Id: Ie2453804b9b7caf9b010ee73e1a90eeb8384e4e8
-
- 26 May, 2016 1 commit
-
-
Sandrine Bailleux authored
This patch introduces some assembler macros to simplify the declaration of the exception vectors. It abstracts the section the exception code is put into as well as the alignments constraints mandated by the ARMv8 architecture. For all TF images, the exception code has been updated to make use of these macros. This patch also updates some invalid comments in the exception vector code. Change-Id: I35737b8f1c8c24b6da89b0a954c8152a4096fa95
-
- 30 Mar, 2016 1 commit
-
-
Gerald Lejeune authored
Asynchronous abort exceptions generated by the platform during cold boot are not taken in EL3 unless SCR_EL3.EA is set. Therefore EA bit is set along with RES1 bits in early BL1 and BL31 architecture initialisation. Further write accesses to SCR_EL3 preserve these bits during cold boot. A build flag controls SCR_EL3.EA value to keep asynchronous abort exceptions being trapped by EL3 after cold boot or not. For further reference SError Interrupts are also known as asynchronous external aborts. On Cortex-A53 revisions below r0p2, asynchronous abort exceptions are taken in EL3 whatever the SCR_EL3.EA value is. Fixes arm-software/tf-issues#368 Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
-
- 09 Dec, 2015 3 commits
-
-
Yatharth Kochar authored
Firmware update(a.k.a FWU) feature is part of the TBB architecture. BL1 is responsible for carrying out the FWU process if platform specific code detects that it is needed. This patch adds support for FWU feature support in BL1 which is included by enabling `TRUSTED_BOARD_BOOT` compile time flag. This patch adds bl1_fwu.c which contains all the core operations of FWU, which are; SMC handler, image copy, authentication, execution and resumption. It also adds bl1.h introducing #defines for all BL1 SMCs. Following platform porting functions are introduced: int bl1_plat_mem_check(uintptr_t mem_base, unsigned int mem_size, unsigned int flags); This function can be used to add platform specific memory checks for the provided base/size for the given security state. The weak definition will invoke `assert()` and return -ENOMEM. __dead2 void bl1_plat_fwu_done(void *cookie, void *reserved); This function can be used to initiate platform specific procedure to mark completion of the FWU process. The weak definition waits forever calling `wfi()`. plat_bl1_common.c contains weak definitions for above functions. FWU process starts when platform detects it and return the image_id other than BL2_IMAGE_ID by using `bl1_plat_get_next_image_id()` in `bl1_main()`. NOTE: User MUST provide platform specific real definition for bl1_plat_mem_check() in order to use it for Firmware update. Change-Id: Ice189a0885d9722d9e1dd03f76cac1aceb0e25ed
-
Yatharth Kochar authored
As of now BL1 loads and execute BL2 based on hard coded information provided in BL1. But due to addition of support for upcoming Firmware Update feature, BL1 now require more flexible approach to load and run different images using information provided by the platform. This patch adds new mechanism to load and execute images based on platform provided image id's. BL1 now queries the platform to fetch the image id of the next image to be loaded and executed. In order to achieve this, a new struct image_desc_t was added which holds the information about images, such as: ep_info and image_info. This patch introduces following platform porting functions: unsigned int bl1_plat_get_next_image_id(void); This is used to identify the next image to be loaded and executed by BL1. struct image_desc *bl1_plat_get_image_desc(unsigned int image_id); This is used to retrieve the image_desc for given image_id. void bl1_plat_set_ep_info(unsigned int image_id, struct entry_point_info *ep_info); This function allows platforms to update ep_info for given image_id. The plat_bl1_common.c file provides default weak implementations of all above functions, the `bl1_plat_get_image_desc()` always return BL2 image descriptor, the `bl1_plat_get_next_image_id()` always return BL2 image ID and `bl1_plat_set_ep_info()` is empty and just returns. These functions gets compiled into all BL1 platforms by default. Platform setup in BL1, using `bl1_platform_setup()`, is now done _after_ the initialization of authentication module. This change provides the opportunity to use authentication while doing the platform setup in BL1. In order to store secure/non-secure context, BL31 uses percpu_data[] to store context pointer for each core. In case of BL1 only the primary CPU will be active hence percpu_data[] is not required to store the context pointer. This patch introduce bl1_cpu_context[] and bl1_cpu_context_ptr[] to store the context and context pointers respectively. It also also re-defines cm_get_context() and cm_set_context() for BL1 in bl1/bl1_context_mgmt.c. BL1 now follows the BL31 pattern of using SP_EL0 for the C runtime environment, to support resuming execution from a previously saved context. NOTE: THE `bl1_plat_set_bl2_ep_info()` PLATFORM PORTING FUNCTION IS NO LONGER CALLED BY BL1 COMMON CODE. PLATFORMS THAT OVERRIDE THIS FUNCTION MAY NEED TO IMPLEMENT `bl1_plat_set_ep_info()` INSTEAD TO MAINTAIN EXISTING BEHAVIOUR. Change-Id: Ieee4c124b951c2e9bc1c1013fa2073221195d881
-
Yatharth Kochar authored
The upcoming Firmware Update feature needs transitioning across Secure/Normal worlds to complete the FWU process and hence requires context management code to perform this task. Currently context management code is part of BL31 stage only. This patch moves the code from (include)/bl31 to (include)/common. Some function declarations/definitions and macros have also moved to different files to help code sharing. Change-Id: I3858b08aecdb76d390765ab2b099f457873f7b0c
-
- 26 Nov, 2015 3 commits
-
-
Sandrine Bailleux authored
This patch introduces a new build option named COLD_BOOT_SINGLE_CPU, which allows platforms that only release a single CPU out of reset to slightly optimise their cold boot code, both in terms of code size and performance. COLD_BOOT_SINGLE_CPU defaults to 0, which assumes that the platform may release several CPUs out of reset. In this case, the cold reset code needs to coordinate all CPUs via the usual primary/secondary CPU distinction. If a platform guarantees that only a single CPU will ever be released out of reset, there is no need to arbitrate execution ; the notion of primary and secondary CPUs itself no longer exists. Such platforms may set COLD_BOOT_SINGLE_CPU to 1 in order to compile out the primary/secondary CPU identification in the cold reset code. All ARM standard platforms can release several CPUs out of reset so they use COLD_BOOT_SINGLE_CPU=0. However, on CSS platforms like Juno, bringing up more than one CPU at reset should only be attempted when booting an EL3 payload, as it is not fully supported in the normal boot flow. For platforms using COLD_BOOT_SINGLE_CPU=1, the following 2 platform APIs become optional: - plat_secondary_cold_boot_setup(); - plat_is_my_cpu_primary(). The Porting Guide has been updated to reflect that. User Guide updated as well. Change-Id: Ic5b474e61b7aec1377d1e0b6925d17dfc376c46b
-
Sandrine Bailleux authored
This patch modifies the prototype of the bl1_plat_prepare_exit() platform API to pass the address of the entry point info structure received from BL2. The structure contains information that can be useful, depending on the kind of clean up or bookkeeping operations to perform. The weak implementation of this function ignores this argument to preserve platform backwards compatibility. NOTE: THIS PATCH MAY BREAK PLATFORM PORTS THAT ARE RELYING ON THE FORMER PROTOTYPE OF THE BL1_PLAT_PREPARE_EXIT() API. Change-Id: I3fc18f637de06c85719c4ee84c85d6a4572a0fdb
-
Sandrine Bailleux authored
This patch introduces a new build flag, SPIN_ON_BL1_EXIT, which puts an infinite loop in BL1. It is intended to help debugging the post-BL2 phase of the Trusted Firmware by stopping execution in BL1 just before handing over to BL31. At this point, the developer may take control of the target using a debugger. This feature is disabled by default and can be enabled by rebuilding BL1 with SPIN_ON_BL1_EXIT=1. User Guide updated accordingly. Change-Id: I6b6779d5949c9e5571dd371255520ef1ac39685c
-
- 02 Nov, 2015 1 commit
-
-
Sandrine Bailleux authored
- Remove out-dated information about the use of printf() in the function comment. - Make the argument const, as the function doesn't need to modify it. - Rename the function into bl1_print_bl31_ep_info() to make its purpose clearer. Change-Id: I2a9d215a37f0ec11aefce0c5c9e050473b7a6b25
-
- 20 Oct, 2015 1 commit
-
-
Juan Castillo authored
This patch adds an optional API to the platform port: void bl1_plat_prepare_exit(void); This function is called prior to exiting BL1 in response to the RUN_IMAGE_SMC request raised by BL2. It should be used to perform platform specific clean up or bookkeeping operations before transferring control to the next image. A weak empty definition of this function has been provided to preserve platform backwards compatibility. Change-Id: Iec09697de5c449ae84601403795cdb6aca166ba1
-
- 19 Oct, 2015 1 commit
-
-
Sandrine Bailleux authored
The AArch64 synchronous exception vector code in BL1 is almost reaching its architectural limit of 32 instructions. This means there is very little space for this code to grow. This patch reduces the size of the exception vector code by moving most of its code in a function to which we branch from SynchronousExceptionA64. Change-Id: Ib35351767a685fb2c2398029d32e54026194f7ed
-
- 04 Jun, 2015 2 commits
-
-
Sandrine Bailleux authored
This patch introduces a new platform build option, called PROGRAMMABLE_RESET_ADDRESS, which tells whether the platform has a programmable or fixed reset vector address. If the reset vector address is fixed then the code relies on the platform_get_entrypoint() mailbox mechanism to figure out where it is supposed to jump. On the other hand, if it is programmable then it is assumed that the platform code will program directly the right address into the RVBAR register (instead of using the mailbox redirection) so the mailbox is ignored in this case. Change-Id: If59c3b11fb1f692976e1d8b96c7e2da0ebfba308
-
Sandrine Bailleux authored
The attempt to run the CPU reset code as soon as possible after reset results in highly complex conditional code relating to the RESET_TO_BL31 option. This patch relaxes this requirement a little. In the BL1, BL3-1 and PSCI entrypoints code, the sequence of operations is now as follows: 1) Detect whether it is a cold or warm boot; 2) For cold boot, detect whether it is the primary or a secondary CPU. This is needed to handle multiple CPUs entering cold reset simultaneously; 3) Run the CPU init code. This patch also abstracts the EL3 registers initialisation done by the BL1, BL3-1 and PSCI entrypoints into common code. This improves code re-use and consolidates the code flows for different types of systems. NOTE: THE FUNCTION plat_secondary_cold_boot() IS NOW EXPECTED TO NEVER RETURN. THIS PATCH FORCES PLATFORM PORTS THAT RELIED ON THE FORMER RETRY LOOP AT THE CALL SITE TO MODIFY THEIR IMPLEMENTATION. OTHERWISE, SECONDARY CPUS WILL PANIC. Change-Id: If5ecd74d75bee700b1bd718d23d7556b8f863546
-
- 08 Apr, 2015 1 commit
-
-
Kévin Petit authored
In order for the symbol table in the ELF file to contain the size of functions written in assembly, it is necessary to report it to the assembler using the .size directive. To fulfil the above requirements, this patch introduces an 'endfunc' macro which contains the .endfunc and .size directives. It also adds a .func directive to the 'func' assembler macro. The .func/.endfunc have been used so the assembler can fail if endfunc is omitted. Fixes ARM-Software/tf-issues#295 Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc Signed-off-by: Kévin Petit <kevin.petit@arm.com>
-
- 22 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch extends the build option `USE_COHERENT_MEMORY` to conditionally remove coherent memory from the memory maps of all boot loader stages. The patch also adds necessary documentation for coherent memory removal in firmware-design, porting and user guides. Fixes ARM-Software/tf-issues#106 Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
-
- 27 Aug, 2014 1 commit
-
-
Sandrine Bailleux authored
This patch gathers miscellaneous minor fixes to the documentation, and comments in the source code. Change-Id: I631e3dda5abafa2d90f464edaee069a1e58b751b Co-Authored-By: Soby Mathew <soby.mathew@arm.com> Co-Authored-By: Dan Handley <dan.handley@arm.com>
-
- 20 Aug, 2014 1 commit
-
-
Soby Mathew authored
This patch introduces a framework which will allow CPUs to perform implementation defined actions after a CPU reset, during a CPU or cluster power down, and when a crash occurs. CPU specific reset handlers have been implemented in this patch. Other handlers will be implemented in subsequent patches. Also moved cpu_helpers.S to the new directory lib/cpus/aarch64/. Change-Id: I1ca1bade4d101d11a898fb30fea2669f9b37b956
-
- 15 Aug, 2014 1 commit
-
-
Achin Gupta authored
This patch disables routing of external aborts from lower exception levels to EL3 and ensures that a SError interrupt generated as a result of execution in EL3 is taken locally instead of a lower exception level. The SError interrupt is enabled in the TSP code only when the operation has not been directly initiated by the normal world. This is to prevent the possibility of an asynchronous external abort which originated in normal world from being taken when execution is in S-EL1. Fixes ARM-software/tf-issues#153 Change-Id: I157b996c75996d12fd86d27e98bc73dd8bce6cd5
-
- 28 Jul, 2014 1 commit
-
-
Achin Gupta authored
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They do not have to be saved and restored either. The M, WXN and optionally the C bit are set in the enable_mmu_elX() function. This is done during both the warm and cold boot paths. Fixes ARM-software/tf-issues#226 Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
-
- 19 Jul, 2014 1 commit
-
-
Achin Gupta authored
This patch reworks the cold boot path across the BL1, BL2, BL3-1 and BL3-2 boot loader stages to not use stacks allocated in coherent memory for early platform setup and enabling the MMU. Stacks allocated in normal memory are used instead. Attributes for stack memory change from nGnRnE when the MMU is disabled to Normal WBWA Inner-shareable when the MMU and data cache are enabled. It is possible for the CPU to read stale stack memory after the MMU is enabled from another CPUs cache. Hence, it is unsafe to turn on the MMU and data cache while using normal stacks when multiple CPUs are a part of the same coherency domain. It is safe to do so in the cold boot path as only the primary cpu executes it. The secondary cpus are in a quiescent state. This patch does not remove the allocation of coherent stack memory. That is done in a subsequent patch. Change-Id: I12c80b7c7ab23506d425c5b3a8a7de693498f830
-
- 24 Jun, 2014 2 commits
-
-
Juan Castillo authored
Exclude stdlib files because they do not follow kernel code style. Fixes ARM-software/tf-issues#73 Change-Id: I4cfafa38ab436f5ab22c277cb38f884346a267ab
-
Vikram Kanigiri authored
This patch reworks FVP specific code responsible for determining the entry point information for BL3-2 and BL3-3 stages when BL3-1 is configured as the reset handler. Change-Id: Ia661ff0a6a44c7aabb0b6c1684b2e8d3642d11ec
-
- 23 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI and SPDs into two functions: * The first uses entry_point_info to initialize the relevant cpu_context for first entry into a lower exception level on a CPU * The second populates the EL1 and EL2 system registers as needed from the cpu_context to ensure correct entry into the lower EL This patch alters the way that BL3-1 determines which exception level is used when first entering EL1 or EL2 during cold boot - this is now fully determined by the SPSR value in the entry_point_info for BL3-3, as set up by the platform code in BL2 (or otherwise provided to BL3-1). In the situation that EL1 (or svc mode) is selected for a processor that supports EL2, the context management code will now configure all essential EL2 register state to ensure correct execution of EL1. This allows the platform code to run non-secure EL1 payloads directly without requiring a small EL2 stub or OS loader. Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
-
- 22 May, 2014 3 commits
-
-
Vikram Kanigiri authored
This change adds optional reset vector support to BL3-1 which means BL3-1 entry point can detect cold/warm boot, initialise primary cpu, set up cci and mail box. When using BL3-1 as a reset vector it is assumed that the BL3-1 platform code can determine the location of the BL3-2 images, or load them as there are no parameters that can be passed to BL3-1 at reset. It also fixes the incorrect initialisation of mailbox registers on the FVP platform This feature can be enabled by building the code with make variable RESET_TO_BL31 set as 1 Fixes ARM-software/TF-issues#133 Fixes ARM-software/TF-issues#20 Change-Id: I4e23939b1c518614b899f549f1e8d412538ee570
-
Vikram Kanigiri authored
This patch is based on spec published at https://github.com/ARM-software/tf-issues/issues/133 It rearranges the bl31_args struct into bl31_params and bl31_plat_params which provide the information needed for Trusted firmware and platform specific data via x0 and x1 On the FVP platform BL3-1 params and BL3-1 plat params and its constituents are stored at the start of TZDRAM. The information about memory availability and size for BL3-1, BL3-2 and BL3-3 is moved into platform specific data. Change-Id: I8b32057a3d0dd3968ea26c2541a0714177820da9
-
Vikram Kanigiri authored
This patch reworks the handover interface from: BL1 to BL2 and BL2 to BL3-1. It removes the raise_el(), change_el(), drop_el() and run_image() functions as they catered for code paths that were never exercised. BL1 calls bl1_run_bl2() to jump into BL2 instead of doing the same by calling run_image(). Similarly, BL2 issues the SMC to transfer execution to BL3-1 through BL1 directly. Only x0 and x1 are used to pass arguments to BL31. These arguments and parameters for running BL3-1 are passed through a reference to a 'el_change_info_t' structure. They were being passed value in general purpose registers earlier. Change-Id: Id4fd019a19a9595de063766d4a66295a2c9307e1
-
- 07 May, 2014 1 commit
-
-
Andrew Thoelke authored
Instead of using the system register helper functions to read or write system registers, assembler coded functions should use MRS/MSR instructions. This results in faster and more compact code. This change replaces all usage of the helper functions with direct register accesses. Change-Id: I791d5f11f257010bb3e6a72c6c5ab8779f1982b3
-