- 10 Jan, 2018 1 commit
-
-
Antonio Nino Diaz authored
Rename SP_VERSION macros to MM_VERSION, which is the name used in the MM specification [1]. Also, a few more helper macros have been added. MM-specific definitions have been moved to their own header file. [1] http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf Change-Id: Ia10e48c7e81a7a1f5eeca29a5270cae740a4a88a Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 08 Jan, 2018 2 commits
-
-
Antonio Nino Diaz authored
The Secure Partition should be able to be used from any CPU, not just the lead one. This patch point the secure contexts of all secondary CPUs to the same one used by the lead CPU for the Secure Partition. This way, they can also use it. In order to prevent more than one CPU from using the Secure Partition at the same time, a lock has been added. Change-Id: Ica76373127c3626498b06c558a4874ce72201ff7 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
Antonio Nino Diaz authored
Whether a Secure Partition is being initialized or not is something related to that specific partition, so it should be saved with the rest of the information related to it. Change-Id: Ie8a780f70df83fb03ef9c01ba37960208d9b5319 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 12 Dec, 2017 1 commit
-
-
Sandrine Bailleux authored
This partially reverts commit d6b532b5 , keeping only the fixes to the assertions. The changes related to the order of arguments passed to the secure partition were not correct and violated the specification of the SP_EVENT_COMPLETE SMC. This patch also improves the MM_COMMUNICATE argument validation. The cookie argument, as it comes from normal world, can't be trusted and thus needs to always be validated at run time rather than using an assertion. Also validate the communication buffer address and return INVALID_PARAMETER if it is zero, as per the MM specification. Fix a few typos in comments and use the "secure partition" terminology rather than "secure payload". Change-Id: Ice6b7b5494b729dd44611f9a93d362c55ab244f7 Signed-off-by: Sandrine Bailleux <sandrine.bailleux@arm.com>
-
- 06 Dec, 2017 3 commits
-
-
Antonio Nino Diaz authored
A new platform define, `PLAT_SP_IMAGE_XLAT_SECTION_NAME`, has been introduced to select the section where the translation tables used by the S-EL1/S-EL0 are placed. This define has been used to move the translation tables to DRAM secured by TrustZone. Most of the extra needed space in BL31 when SPM is enabled is due to the large size of the translation tables. By moving them to this memory region we can save 44 KiB. A new argument has been added to REGISTER_XLAT_CONTEXT2() to specify the region where the translation tables have to be placed by the linker. Change-Id: Ia81709b4227cb8c92601f0caf258f624c0467719 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
Antonio Nino Diaz authored
Common code mustn't include ARM platforms headers. Change-Id: Ib6e4f5a77c2d095e6e8c3ad89c89cb1959cd3043 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
Jeenu Viswambharan authored
At present, both SDEI_PRIVATE_RESET and SDEI_SHARED_RESET returns SDEI_PENDING if they fail to unregister an event. The SDEI specification however requires that the APIs return SDEI_EDENY in these cases. This patch fixes the return codes for the reset APIs. Change-Id: Ic14484c91fa8396910387196c256d1ff13d03afd Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 05 Dec, 2017 2 commits
-
-
Sandrine Bailleux authored
Rename SP_COMMUNICATE_AARCH32/AARCH64 into MM_COMMUNICATE_AARCH32/AARCH64 to align with the MM specification [1]. [1] http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf Change-Id: I478aa4024ace7507d14a5d366aa8e20681075b03 Signed-off-by: Sandrine Bailleux <sandrine.bailleux@arm.com>
-
Antonio Nino Diaz authored
The defines have been renamed to match the names used in the documentation. Change-Id: I2f18b65112d2db040a89d5a8522e9790c3e21628 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 20 Nov, 2017 2 commits
-
-
Jeenu Viswambharan authored
The SDEI specification requires that binding a client interrupt dispatches SDEI Normal priority event. This means that dynamic events can't have Critical priority. Add asserts for this. Change-Id: I0bdd9e0e642fb2b61810cb9f4cbfbd35bba521d1 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
Jeenu Viswambharan authored
Change-Id: Ic381ab5d03ec68c7f6e8d357ac2e2cbf0cc6b2e8 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 15 Nov, 2017 2 commits
-
-
Antonio Nino Diaz authored
The parameters passed to the Secure world from the Secure Partition Manager when invoking SP_COMMUNICATE_AARCH32/64 were incorrect, as well as the checks done on them. Change-Id: I26e8c80cad0b83437db7aaada3d0d9add1c53a78 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
Antonio Nino Diaz authored
The code was incorrectly reading from ID_AA64PRF0_EL1 instead of ID_AA64MMFR0_EL1 causing the supported granularity sizes returned by the code to be wrong. This wasn't causing any problem because it's just used to check the alignment of the base of the buffer shared between Non-secure and Secure worlds, and it was aligned to more than 64 KiB, which is the maximum granularity supported by the architecture. Change-Id: Icc0d949d9521cc0ef13afb753825c475ea62d462 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 13 Nov, 2017 3 commits
-
-
Jeenu Viswambharan authored
Change-Id: Iee617a3528225349b6eede2f8abb26da96640678 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
Jeenu Viswambharan authored
This allows for other EL3 components to schedule an SDEI event dispatch to Normal world upon the next ERET. The API usage constrains are set out in the SDEI dispatcher documentation. Documentation to follow. Change-Id: Id534bae0fd85afc94523490098c81f85c4e8f019 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
Jeenu Viswambharan authored
The implementation currently supports only interrupt-based SDEI events, and supports all interfaces as defined by SDEI specification version 1.0 [1]. Introduce the build option SDEI_SUPPORT to include SDEI dispatcher in BL31. Update user guide and porting guide. SDEI documentation to follow. [1] http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf Change-Id: I758b733084e4ea3b27ac77d0259705565842241a Co-authored-by: Yousuf A <yousuf.sait@arm.com> Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 10 Nov, 2017 1 commit
-
-
Antonio Nino Diaz authored
The MP info struct is placed right after the boot info struct. However, when calculating the address of the MP info, the size of the boot info struct was being multiplied by the size of the MP boot info. This left a big gap of empty space between the structs. This didn't break any code because the boot info struct has a pointer to the MP info struct. It was just wasting space. Change-Id: I1668e3540d9173261968f6740623549000bd48db Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 08 Nov, 2017 1 commit
-
-
Antonio Nino Diaz authored
A Secure Partition is a software execution environment instantiated in S-EL0 that can be used to implement simple management and security services. Since S-EL0 is an unprivileged exception level, a Secure Partition relies on privileged firmware e.g. ARM Trusted Firmware to be granted access to system and processor resources. Essentially, it is a software sandbox that runs under the control of privileged software in the Secure World and accesses the following system resources: - Memory and device regions in the system address map. - PE system registers. - A range of asynchronous exceptions e.g. interrupts. - A range of synchronous exceptions e.g. SMC function identifiers. A Secure Partition enables privileged firmware to implement only the absolutely essential secure services in EL3 and instantiate the rest in a partition. Since the partition executes in S-EL0, its implementation cannot be overly complex. The component in ARM Trusted Firmware responsible for managing a Secure Partition is called the Secure Partition Manager (SPM). The SPM is responsible for the following: - Validating and allocating resources requested by a Secure Partition. - Implementing a well defined interface that is used for initialising a Secure Partition. - Implementing a well defined interface that is used by the normal world and other secure services for accessing the services exported by a Secure Partition. - Implementing a well defined interface that is used by a Secure Partition to fulfil service requests. - Instantiating the software execution environment required by a Secure Partition to fulfil a service request. Change-Id: I6f7862d6bba8732db5b73f54e789d717a35e802f Co-authored-by: Douglas Raillard <douglas.raillard@arm.com> Co-authored-by: Sandrine Bailleux <sandrine.bailleux@arm.com> Co-authored-by: Achin Gupta <achin.gupta@arm.com> Co-authored-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com> Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 03 May, 2017 1 commit
-
-
dp-arm authored
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 03 Nov, 2016 1 commit
-
-
dp-arm authored
Without an explicit cache flush, the next timestamp captured might have a bogus value. This can happen if the following operations happen in order, on a CPU that's being powered down. 1) ENTER PSCI timestamp is captured with caches enabled. 2) The next timestamp (ENTER_HW_LOW_PWR) is captured with caches disabled. 3) On a system that uses a write-back cache configuration, the cache line that holds the PMF timestamps is evicted. After step 1), the ENTER_PSCI timestamp is cached and not in main memory. After step 2), the ENTER_HW_LOW_PWR timestamp is stored in main memory. Before the CPU power down happens, the hardware evicts the cache line that contains the PMF timestamps for this service. As a result, the timestamp captured in step 2) is overwritten with a bogus value. Change-Id: Ic1bd816498d1a6d4dc16540208ed3a5efe43f529 Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 12 Oct, 2016 1 commit
-
-
dp-arm authored
In order to quantify the overall time spent in the PSCI software implementation, an initial collection of PMF instrumentation points has been added. Instrumentation has been added to the following code paths: - Entry to PSCI SMC handler. The timestamp is captured as early as possible during the runtime exception and stored in memory before entering the PSCI SMC handler. - Exit from PSCI SMC handler. The timestamp is captured after normal return from the PSCI SMC handler or if a low power state was requested it is captured in the bl31 warm boot path before return to normal world. - Entry to low power state. The timestamp is captured before entry to a low power state which implies either standby or power down. As these power states are mutually exclusive, only one timestamp is defined to describe both. It is possible to differentiate between the two power states using the PSCI STAT interface. - Exit from low power state. The timestamp is captured after a standby or power up operation has completed. To calculate the number of cycles spent running code in Trusted Firmware one can perform the following calculation: (exit_psci - enter_psci) - (exit_low_pwr - enter_low_pwr). The resulting number of cycles can be converted to time given the frequency of the counter. Change-Id: Ie3b8f3d16409b6703747093b3a2d5c7429ad0166 Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 22 Sep, 2016 1 commit
-
-
Soby Mathew authored
This patch moves the invocation of `psci_setup()` from BL31 and SP_MIN into `std_svc_setup()` as part of ARM Standard Service initialization. This allows us to consolidate ARM Standard Service initializations which will be added to in the future. A new function `get_arm_std_svc_args()` is introduced to get arguments corresponding to each standard service. This function must be implemented by the EL3 Runtime Firmware and both SP_MIN and BL31 implement it. Change-Id: I38e1b644f797fa4089b20574bd4a10f0419de184
-
- 19 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch introduces the PSCI Library interface. The major changes introduced are as follows: * Earlier BL31 was responsible for Architectural initialization during cold boot via bl31_arch_setup() whereas PSCI was responsible for the same during warm boot. This functionality is now consolidated by the PSCI library and it does Architectural initialization via psci_arch_setup() during both cold and warm boots. * Earlier the warm boot entry point was always `psci_entrypoint()`. This was not flexible enough as a library interface. Now PSCI expects the runtime firmware to provide the entry point via `psci_setup()`. A new function `bl31_warm_entrypoint` is introduced in BL31 and the previous `psci_entrypoint()` is deprecated. * The `smc_helpers.h` is reorganized to separate the SMC Calling Convention defines from the Trusted Firmware SMC helpers. The former is now in a new header file `smcc.h` and the SMC helpers are moved to Architecture specific header. * The CPU context is used by PSCI for context initialization and restoration after power down (PSCI Context). It is also used by BL31 for SMC handling and context management during Normal-Secure world switch (SMC Context). The `psci_smc_handler()` interface is redefined to not use SMC helper macros thus enabling to decouple the PSCI context from EL3 runtime firmware SMC context. This enables PSCI to be integrated with other runtime firmware using a different SMC context. NOTE: With this patch the architectural setup done in `bl31_arch_setup()` is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be invoked prior to architectural setup. It is highly unlikely that the platform setup will depend on architectural setup and cause any failure. Please be be aware of this change in sequence. Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
-
- 18 Jul, 2016 3 commits
-
-
Soby Mathew authored
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
-
Soby Mathew authored
This patch fixes some coding guideline warnings reported by the checkpatch script. Only files related to upcoming feature development have been fixed. Change-Id: I26fbce75c02ed62f00493ed6c106fe7c863ddbc5
-
Soby Mathew authored
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
-
- 16 Jun, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds following optional PSCI STAT functions: - PSCI_STAT_RESIDENCY: This call returns the amount of time spent in power_state in microseconds, by the node represented by the `target_cpu` and the highest level of `power_state`. - PSCI_STAT_COUNT: This call returns the number of times a `power_state` has been used by the node represented by the `target_cpu` and the highest power level of `power_state`. These APIs provides residency statistics for power states that has been used by the platform. They are implemented according to v1.0 of the PSCI specification. By default this optional feature is disabled in the PSCI implementation. To enable it, set the boolean flag `ENABLE_PSCI_STAT` to 1. This also sets `ENABLE_PMF` to 1. Change-Id: Ie62e9d37d6d416ccb1813acd7f616d1ddd3e8aff
-
- 25 May, 2016 1 commit
-
-
Soby Mathew authored
This patch adds a new optional platform hook `pwr_domain_pwr_down_wfi()` in the plat_psci_ops structure. This hook allows the platform to perform platform specific actions including the wfi invocation to enter powerdown. This hook is invoked by both psci_do_cpu_off() and psci_cpu_suspend_start() functions. The porting-guide.md is also updated for the same. This patch also modifies the `psci_power_down_wfi()` function to invoke `plat_panic_handler` incase of panic instead of the busy while loop. Fixes ARM-Software/tf-issues#375 Change-Id: Iba104469a1445ee8d59fb3a6fdd0a98e7f24dfa3
-
- 20 May, 2016 1 commit
-
-
Antonio Nino Diaz authored
Added plat_get_syscnt_freq2, which is a 32 bit variant of the 64 bit plat_get_syscnt_freq. The old one has been flagged as deprecated. Common code has been updated to use this new version. Porting guide has been updated. Change-Id: I9e913544926c418970972bfe7d81ee88b4da837e
-
- 25 Apr, 2016 2 commits
-
-
Sandrine Bailleux authored
The "end power level" value passed as the 3rd argument to the psci_cpu_on_start() function is not used so this patch removes it. Change-Id: Icaa68b8c4ecd94507287970455fbff354faaa41e
-
Sandrine Bailleux authored
This patch introduces some debug assertions in the function psci_cpu_on_start() to check the arguments it receives are valid. Change-Id: If4d23c9f668fb46f2d18c5e2ed1929498cc6736b
-
- 08 Feb, 2016 1 commit
-
-
Soby Mathew authored
When BL31 is compiled at `-O3` optimization level using Linaro GCC 4.9 AArch64 toolchain, it reports the following error: ``` services/std_svc/psci/psci_common.c: In function 'psci_do_state_coordination': services/std_svc/psci/psci_common.c:220:27: error: array subscript is above array bounds [-Werror=array-bounds] psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state; ^ ``` This error is a false positive and this patch resolves the error by asserting the array bounds in `psci_do_state_coordination()`. Fixes ARM-software/tf-issues#347 Change-Id: I3584ed7b2e28faf455b082cb3281d6e1d11d6495
-
- 01 Feb, 2016 1 commit
-
-
Soby Mathew authored
When a CPU is powered down using PSCI CPU OFF API, it disables its caches and updates its `aff_info_state` to OFF. The corresponding cache line is invalidated by the CPU so that the update will be observed by other CPUs running with caches enabled. There is a possibility that another CPU which has been trying to turn ON this CPU via PSCI CPU ON API, has already seen the update to `aff_info_state` and proceeds to update the state to ON_PENDING prior to the cache invalidation. This may result in the update of the state to ON_PENDING being discarded. This patch fixes this issue by making sure that the update of `aff_info_state` to ON_PENDING sticks by reading back the value after the cache flush and retrying it if not updated. The patch also adds a dsbish() to `psci_do_cpu_off()` to ensure ordering of the update to `aff_info_state` prior to cache line invalidation. Fixes ARM-software/tf-issues#349 Change-Id: I225de99957fe89871f8c57bcfc243956e805dcca
-
- 14 Jan, 2016 1 commit
-
-
Soren Brinkmann authored
Migrate all direct usage of __attribute__ to usage of their corresponding macros from cdefs.h. e.g.: - __attribute__((unused)) -> __unused Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
-
- 21 Dec, 2015 1 commit
-
-
Sandrine Bailleux authored
Change-Id: I6f49bd779f2a4d577c6443dd160290656cdbc59b
-
- 14 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
-
- 06 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch fixes an issue in the PSCI framework where the affinity info state of a core was being set to OFF even when the SPD had denied the CPU_OFF request. Now, the state remains set to ON instead. Fixes ARM-software/tf-issues#323 Change-Id: Ia9042aa41fae574eaa07fd2ce3f50cf8cae1b6fc
-
- 14 Sep, 2015 1 commit
-
-
Achin Gupta authored
On the ARMv8 architecture, cache maintenance operations by set/way on the last level of integrated cache do not affect the system cache. This means that such a flush or clean operation could result in the data being pushed out to the system cache rather than main memory. Another CPU could access this data before it enables its data cache or MMU. Such accesses could be serviced from the main memory instead of the system cache. If the data in the sysem cache has not yet been flushed or evicted to main memory then there could be a loss of coherency. The only mechanism to guarantee that the main memory will be updated is to use cache maintenance operations to the PoC by MVA(See section D3.4.11 (System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G). This patch removes the reliance of Trusted Firmware on the flush by set/way operation to ensure visibility of data in the main memory. Cache maintenance operations by MVA are now used instead. The following are the broad category of changes: 1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is initialised. This ensures that any stale cache lines at any level of cache are removed. 2. Updates to global data in runtime firmware (BL31) by the primary CPU are made visible to secondary CPUs using a cache clean operation by MVA. 3. Cache maintenance by set/way operations are only used prior to power down. NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES. Fixes ARM-software/tf-issues#205 Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
-
- 11 Sep, 2015 1 commit
-
-
Andrew Thoelke authored
This patch unifies the bakery lock api's across coherent and normal memory implementation of locks by using same data type `bakery_lock_t` and similar arguments to functions. A separate section `bakery_lock` has been created and used to allocate memory for bakery locks using `DEFINE_BAKERY_LOCK`. When locks are allocated in normal memory, each lock for a core has to spread across multiple cache lines. By using the total size allocated in a separate cache line for a single core at compile time, the memory for other core locks is allocated at link time by multiplying the single core locks size with (PLATFORM_CORE_COUNT - 1). The normal memory lock algorithm now uses lock address instead of the `id` in the per_cpu_data. For locks allocated in coherent memory, it moves locks from tzfw_coherent_memory to bakery_lock section. The bakery locks are allocated as part of bss or in coherent memory depending on usage of coherent memory. Both these regions are initialised to zero as part of run_time_init before locks are used. Hence, bakery_lock_init() is made an empty function as the lock memory is already initialised to zero. The above design lead to the removal of psci bakery locks from non_cpu_power_pd_node to psci_locks. NOTE: THE BAKERY LOCK API WHEN USE_COHERENT_MEM IS NOT SET HAS CHANGED. THIS IS A BREAKING CHANGE FOR ALL PLATFORM PORTS THAT ALLOCATE BAKERY LOCKS IN NORMAL MEMORY. Change-Id: Ic3751c0066b8032dcbf9d88f1d4dc73d15f61d8b
-
- 10 Sep, 2015 1 commit
-
-
Achin Gupta authored
In certain Trusted OS implementations it is a requirement to pass them the highest power level which will enter a power down state during a PSCI CPU_SUSPEND or SYSTEM_SUSPEND API invocation. This patch passes this power level to the SPD in the "max_off_pwrlvl" parameter of the svc_suspend() hook. Currently, the highest power level which was requested to be placed in a low power state (retention or power down) is passed to the SPD svc_suspend_finish() hook. This hook is called after emerging from the low power state. It is more useful to pass the highest power level which was powered down instead. This patch does this by changing the semantics of the parameter passed to an SPD's svc_suspend_finish() hook. The name of the parameter has been changed from "suspend_level" to "max_off_pwrlvl" as well. Same changes have been made to the parameter passed to the tsp_cpu_resume_main() function. NOTE: THIS PATCH CHANGES THE SEMANTICS OF THE EXISTING "svc_suspend_finish()" API BETWEEN THE PSCI AND SPD/SP IMPLEMENTATIONS. THE LATTER MIGHT NEED UPDATES TO ENSURE CORRECT BEHAVIOUR. Change-Id: If3a9d39b13119bbb6281f508a91f78a2f46a8b90
-