- 09 Feb, 2016 1 commit
-
-
Soby Mathew authored
GICD_IPRIORITYR and GICD_ITARGETSR specifically support byte addressing so that individual interrupt priorities can be atomically updated by issuing a single byte write. The previous implementation of gicd_set_ipriority() and gicd_set_itargetsr() used 32-bit register accesses, modifying values for 4 interrupts at a time, using a read-modify-write approach. This potentially may cause concurrent changes by other CPUs to the adjacent interrupts to be corrupted. This patch fixes the issue by modifying these accessors to use byte addressing. Fixes ARM-software/tf-issues#343 Change-Id: Iec28b5f5074045b00dfb8d5f5339b685f9425915
-
- 04 Dec, 2015 1 commit
-
-
Soby Mathew authored
This patch renames the GICv3 interrupt group macros from INT_TYPE_G0, INT_TYPE_G1S and INT_TYPE_G1NS to INTR_GROUP0, INTR_GROUP1S and INTR_GROUP1NS respectively. Change-Id: I40c66f589ce6234fa42205adcd91f7d6ad8f33d4
-
- 26 Nov, 2015 2 commits
-
-
Soby Mathew authored
This patch adds a driver for ARM GICv2 systems, example GIC-400. Unlike the existing GIC driver in `include/drivers/arm/arm_gic.h`, this driver is optimised for GICv2 and does not support GICv3 systems in GICv2 compatibility mode. The driver interface has been implemented in `drivers/arm/gic/v2/gicv2_main.c`. The corresponding header is in `include/drivers/arm/gicv2.h`. Helper functions are implemented in `drivers/arm/gic/v2/gicv2_helpers.c` and are accessible through the `drivers/arm/gic/v2/gicv2_private.h` header. Change-Id: I09fffa4e621fb99ba3c01204839894816cd89a2a
-
Achin Gupta authored
This patch adds a driver for ARM GICv3 systems that need to run software stacks where affinity routing is enabled across all privileged exception levels for both security states. This driver is a partial implementation of the ARM Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069A). The driver does not cater for legacy support of interrupts and asymmetric configurations. The existing GIC driver has been preserved unchanged. The common code for GICv2 and GICv3 systems has been refactored into a new file, `drivers/arm/gic/common/gic_common.c`. The corresponding header is in `include/drivers/arm/gic_common.h`. The driver interface is implemented in `drivers/arm/gic/v3/gicv3_main.c`. The corresponding header is in `include/drivers/arm/gicv3.h`. Helper functions are implemented in `drivers/arm/gic/v3/arm_gicv3_helpers.c` and are accessible through the `drivers/arm/gic/v3/gicv3_private.h` header. Change-Id: I8c3c834a1d049d05b776b4dcb76b18ccb927444a
-
- 01 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
From Linux 3.17 onwards, the mainline kernel has support for GICv3 systems and if EL3 exists, it only needs to initialise ICC_SRE_EL3.SRE and ICC_SRE_EL3.Enable to 1. Hence, this patch removes the redundant updates of ICC_SRE_EL2 and ICC_PMR_EL1. NOTE: For partner software's which enter kernel in EL1, ICC_SRE_EL2.Enable and ICC_SRE_EL2.SRE bit needs to be set to 1 in EL2 before jumping to linux. Change-Id: I09ed47869351b08a3b034735f532bc677eaa6917
-
- 09 Jul, 2015 1 commit
-
-
Juan Castillo authored
This patch changes the type of the base address parameter in the ARM device driver APIs to uintptr_t (GIC, CCI, TZC400, PL011). The uintptr_t type allows coverage of the whole memory space and to perform arithmetic operations on the addresses. ARM platform code has also been updated to use uintptr_t as GIC base address in the configuration. Fixes ARM-software/tf-issues#214 Change-Id: I1b87daedadcc8b63e8f113477979675e07d788f1
-
- 19 May, 2015 1 commit
-
-
Achin Gupta authored
The ARM GIC driver treats the entire contents of the GICC_HPPIR as the interrupt ID instead of just bits[9:0]. This could result in an SGI being treated as a Group 1 interrupt on a GICv2 system. This patch introduces a mask to retrieve only the ID from a read of GICC_HPPIR, GICC_IAR and similar registers. The value read from these registers is masked with this constant prior to use as an interrupt ID. Fixes ARM-software/tf-issues#306 Change-Id: Ie3885157de33b71df9781a41f6ef015a30c4608d
-
- 20 Mar, 2015 1 commit
-
-
Achin Gupta authored
On a GICv2 system, the group status of PPIs and SGIs is set in the GICD_IGROUPR0 register. On a GICv3 system, if affinity routing is enabled for the non-secure state, then the group status of PPIs and SGIs should be set in the GICR_IGROUPR0 register. ARM Trusted firmware sets the group status using the GICv2 sequence. On a GICv3 system, if the group status of an interrupt is set to Group 1 through a write to the GICD_IGROUPR0, then the GICR_IGROUPR0 is updated as well. The current sequence is incorrect since it first marks all PPIs and SGIs as Group 1. It then clears the bits in GICD_IGROUPR0 corresponding to secure interrupts to set their group status to Group 0. This operation is a no-op. It leaves the secure generic timer interrupt (#29) used by the TSP marked as Group 1. This causes the interrupt to interfere with the execution of non-secure software. Once an interrupt has been marked as Group 1, the GICR_IGROUPR0 should be programmed to change its group status. This patch rectifies this issue by setting the group status of only the non-secure PPI and SGIs to Group 1 in the first place. GICD_IGROUPR0 resets to 0. So secure interrupts are marked as Group 0 by default. Change-Id: I958b4b15f3e2b2444ce4c17764def36216498d00
-
- 31 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch introduces several improvements to the ARM GIC driver: * In function gicd_set_itargetsr(), target CPU is specified using the same bit mask detailed in the GICD_ITARGETSRn register instead of the CPU linear ID, removing the dependency between bit position and linear ID in the platform porting. The current CPU bit mask may be obtained by reading GICD_ITARGETSR0. * PPIs and SGIs are initialized in arm_gic_pcpu_distif_setup(). SPIs are initialized in arm_gic_distif_setup(). * By default, non secure interrupts are assigned the maximum priority allowed to a non secure interrupt (defined by GIC_HIGHEST_NS_PRIORITY). * GICR base address is allowed to be NULL for GICv1 and GICv2. Change-Id: Ie2837fe860d43b2282e582dfdb13c39c6186f232
-
- 28 Jul, 2014 1 commit
-
-
Juan Castillo authored
Assert a valid security state using the macro sec_state_is_valid(). Replace assert() with panic() in those cases that might arise because of runtime errors and not programming errors. Replace panic() with assert() in those cases that might arise because of programming errors. Fixes ARM-software/tf-issues#96 Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
-
- 09 Jul, 2014 1 commit
-
-
Dan Handley authored
Refactor the FVP gic code in plat/fvp/fvp_gic.c to be a generic ARM GIC driver in drivers/arm/gic/arm_gic.c. Provide the platform specific inputs in the arm_gic_setup() function so that the driver has no explicit dependency on platform code. Provide weak implementations of the platform interrupt controller API in a new file, plat/common/plat_gic.c. These simply call through to the ARM GIC driver. Move the only remaining FVP GIC function, fvp_gic_init() to plat/fvp/aarch64/fvp_common.c and remove plat/fvp/fvp_gic.c Fixes ARM-software/tf-issues#182 Change-Id: Iea82fe095fad62dd33ba9efbddd48c57717edd21
-
- 10 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Replace the current out-of-line assembler implementations of the system register and system instruction operations with inline assembler. This enables better compiler optimisation and code generation when accessing system registers. Fixes ARM-software/tf-issues#91 Change-Id: I149af3a94e1e5e5140a3e44b9abfc37ba2324476
-
- 22 May, 2014 1 commit
-
-
Achin Gupta authored
This patch introduces a framework for registering interrupts routed to EL3. The interrupt routing model is governed by the SCR_EL3.IRQ and FIQ bits and the security state an interrupt is generated in. The framework recognizes three type of interrupts depending upon which exception level and security state they should be handled in i.e. Secure EL1 interrupts, Non-secure interrupts and EL3 interrupts. It provides an API and macros that allow a runtime service to register an handler for a type of interrupt and specify the routing model. The framework validates the routing model and uses the context management framework to ensure that it is applied to the SCR_EL3 prior to entry into the target security state. It saves the handler in internal data structures. An API is provided to retrieve the handler when an interrupt of a particular type is asserted. Registration is expected to be done once by the primary CPU. The same handler and routing model is used for all CPUs. Support for EL3 interrupts will be added to the framework in the future. A makefile flag has been added to allow the FVP port choose between ARM GIC v2 and v3 support in EL3. The latter version is currently unsupported. A framework for handling interrupts in BL3-1 will be introduced in subsequent patches. The default routing model in the absence of any handlers expects no interrupts to be routed to EL3. Change-Id: Idf7c023b34fcd4800a5980f2bef85e4b5c29e649
-
- 13 May, 2014 1 commit
-
-
Juan Castillo authored
This patch fixes C accessors to GIC registers that follow a set/clear semantic to change the state of an interrupt, instead of read/write/modify. These registers are: Set-Enable Clear-Enable Set-Pending Clear-Pending Set-Active Clear-Active For instance, to enable an interrupt we write a one to the corresponding bit in the Set-Enable register, whereas to disable it we write a one to the corresponding bit in the Clear-Enable register. Fixes ARM-software/tf-issues#137 Change-Id: I3b66bad94d0b28e0fe08c9042bac0bf5ffa07944
-
- 07 May, 2014 1 commit
-
-
Andrew Thoelke authored
The current code does not always use data and instruction barriers as required by the architecture and frequently uses barriers excessively due to their inclusion in all of the write_*() helper functions. Barriers should be used explicitly in assembler or C code when modifying processor state that requires the barriers in order to enable review of correctness of the code. This patch removes the barriers from the helper functions and introduces them as necessary elsewhere in the code. PORTING NOTE: check any port of Trusted Firmware for use of system register helper functions for reliance on the previous barrier behaviour and add explicit barriers as necessary. Fixes ARM-software/tf-issues#92 Change-Id: Ie63e187404ff10e0bdcb39292dd9066cb84c53bf
-
- 06 May, 2014 3 commits
-
-
Dan Handley authored
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
-
Dan Handley authored
Move the function prototypes from gic.h into either gic_v2.h or gic_v3.h as appropriate. Update the source files to include the correct headers. Change-Id: I368cfda175cdcbd3a68f46e2332738ec49048e19
-
Dan Handley authored
Move almost all system include files to a logical sub-directory under ./include. The only remaining system include directories not under ./include are specific to the platform. Move the corresponding source files to match the include directory structure. Also remove pm.h as it is no longer used. Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
-