- 15 Dec, 2016 1 commit
-
-
Jeenu Viswambharan authored
Various CPU drivers in ARM Trusted Firmware register functions to handle power-down operations. At present, separate functions are registered to power down individual cores and clusters. This scheme operates on the basis of core and cluster, and doesn't cater for extending the hierarchy for power-down operations. For example, future CPUs might support multiple threads which might need powering down individually. This patch therefore reworks the CPU operations framework to allow for registering power down handlers on specific level basis. Henceforth: - Generic code invokes CPU power down operations by the level required. - CPU drivers explicitly mention CPU_NO_RESET_FUNC when the CPU has no reset function. - CPU drivers register power down handlers as a list: a mandatory handler for level 0, and optional handlers for higher levels. All existing CPU drivers are adapted to the new CPU operations framework without needing any functional changes within. Also update firmware design guide. Change-Id: I1826842d37a9e60a9e85fdcee7b4b8f6bc1ad043 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 24 Jul, 2015 1 commit
-
-
Varun Wadekar authored
Denver is NVIDIA's own custom-designed, 64-bit, dual-core CPU which is fully ARMv8 architecture compatible. Each of the two Denver cores implements a 7-way superscalar microarchitecture (up to 7 concurrent micro-ops can be executed per clock), and includes a 128KB 4-way L1 instruction cache, a 64KB 4-way L1 data cache, and a 2MB 16-way L2 cache, which services both cores. Denver implements an innovative process called Dynamic Code Optimization, which optimizes frequently used software routines at runtime into dense, highly tuned microcode-equivalent routines. These are stored in a dedicated, 128MB main-memory-based optimization cache. After being read into the instruction cache, the optimized micro-ops are executed, re-fetched and executed from the instruction cache as long as needed and capacity allows. Effectively, this reduces the need to re-optimize the software routines. Instead of using hardware to extract the instruction-level parallelism (ILP) inherent in the code, Denver extracts the ILP once via software techniques, and then executes those routines repeatedly, thus amortizing the cost of ILP extraction over the many execution instances. Denver also features new low latency power-state transitions, in addition to extensive power-gating and dynamic voltage and clock scaling based on workloads. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-