- 26 Mar, 2014 2 commits
-
-
Andrew Thoelke authored
All common functions are being built into all binary images, whether or not they are actually used. This change enables the use of -ffunction-sections, -fdata-sections and --gc-sections in the compiler and linker to remove unused code and data from the images. Change-Id: Ia9f78c01054ac4fa15d145af38b88a0d6fb7d409
-
Sandrine Bailleux authored
bl1/aarch64/early_exceptions.S used to be re-used by BL2, BL3-1 and BL3-2. There was some early SMC handling code in there that was not required by the other bootloader stages. Therefore this patch introduces an even simpler exception vector source file for BL2, BL3-1 and BL3-2. Fixes ARM-software/tf-issues#38 Change-Id: I0244b80e9930b0f8035156a0bf91cc3e9a8f995d
-
- 21 Mar, 2014 1 commit
-
-
Sandrine Bailleux authored
The Test Secure-EL1 Payload implementation should always have a platform-specific component. Therefore, there should always be a platform-specific sub-makefile for the TSP. If there is none then assume TSP is not supported on this specific platform and throw an error at build time if the user tries to compile it. Change-Id: Ibfbe6e4861cc7786a29f2fc0341035b852925193
-
- 20 Mar, 2014 1 commit
-
-
Jeenu Viswambharan authored
At present, the entry point for each BL image is specified via the Makefiles and provided on the command line to the linker. When using a link script the entry point should rather be specified via the ENTRY() directive in the link script. This patch updates linker scripts of all BL images to specify the entry point using the ENTRY() directive. It also removes the --entry flag passed to the linker through Makefile. Fixes issue ARM-software/tf-issues#66 Change-Id: I1369493ebbacea31885b51185441f6b628cf8da0
-
- 05 Mar, 2014 3 commits
-
-
Jon Medhurst authored
So it updates each time a bootloader changes, not just when bl*_main.c files are recompiled. Fixes ARM-software/tf-issues#33 Change-Id: Ie8e1a7bd7e1913d2e96ac268606284f76af8c5ab Signed-off-by: Jon Medhurst <tixy@linaro.org>
-
Jon Medhurst authored
Change-Id: I559c5a4d86cad55ce3f6ad71285b538d3cfd76dc Signed-off-by: Jon Medhurst <tixy@linaro.org>
-
Jon Medhurst authored
This change requires all platforms to now specify a list of source files rather than object files. New source files should preferably be specified by using the path as well and we should add this in the future for all files so we can remove use of vpath. This is desirable because vpath hides issues like the fact that BL2 currently pulls in a BL1 file bl1/aarch64/early_exceptions.S and if in the future we added bl2/aarch64/early_exceptions.S then it's likely only one of the two version would be used for both bootloaders. This change also removes the 'dump' build target and simply gets bootloaders to always generate a dump file. At the same time the -x option is added so the section headers and symbols table are listed. Fixes ARM-software/tf-issues#11 Change-Id: Ie38f7be76fed95756c8576cf3f3ea3b7015a18dc Signed-off-by: Jon Medhurst <tixy@linaro.org>
-
- 20 Feb, 2014 4 commits
-
-
Achin Gupta authored
This patch reworks the service provided by the TSP to perform common arithmetic operations on a set of arguments provided by the non-secure world. For a addition, division, subtraction & multiplication operation requested on two arguments in x0 and x1 the steps are: 1. TSPD saves the non-secure context and passes the operation and its arguments to the TSP. 2. TSP asks the TSPD to return the same arguments once again. This exercises an additional SMC path. 3. TSP now has two copies of both x0 and x1. It performs the operation on the corresponding copies i.e. in case of addition it returns x0+x0 and x1+x1. 4. TSPD receives the result, saves the secure context, restores the non-secure context and passes the result back to the non-secure client. Change-Id: I6eebfa2ae0a6f28b1d2e11a31f575c7a4b96724b Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
Achin Gupta authored
This patch implements a set of handlers in the SPD which are called by the PSCI runtime service upon receiving a power management operation. These handlers in turn pass control to the Secure Payload image if required before returning control to PSCI. This ensures that the Secure Payload has complete visibility of all power transitions in the system and can prepare accordingly. Change-Id: I2d1dba5629b7cf2d53999d39fe807dfcf3f62fe2
-
Achin Gupta authored
This patch adds the TSPD service which is responsible for managing communication between the non-secure state and the Test Secure Payload (TSP) executing in S-EL1. The TSPD does the following: 1. Determines the location of the TSP (BL3-2) image and passes control to it for initialization. This is done by exporting the 'bl32_init()' function. 2. Receives a structure containing the various entry points into the TSP image as a response to being initialized. The TSPD uses this information to determine how the TSP should be entered depending on the type of operation. 3. Implements a synchronous mechanism for entering into and returning from the TSP image. This mechanism saves the current C runtime context on top of the current stack and jumps to the TSP through an ERET instruction. The TSP issues an SMC to indicate completion of the previous request. The TSPD restores the saved C runtime context and resumes TSP execution. This patch also introduces a Make variable 'SPD' to choose the specific SPD to include in the build. By default, no SPDs are included in the build. Change-Id: I124da5695cdc510999b859a1bf007f4d049e04f3 Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
Achin Gupta authored
This patch adds a simple TSP as the BL3-2 image. The secure payload executes in S-EL1. It paves the way for the addition of the TSP dispatcher runtime service to BL3-1. The TSP and the dispatcher service will serve as an example of the runtime firmware's ability to toggle execution between the non-secure and secure states in response to SMC request from the non-secure state. The TSP will be replaced by a Trusted OS in a real system. The TSP also exports a set of handlers which should be called in response to a PSCI power management event e.g a cpu being suspended or turned off. For now it runs out of Secure DRAM on the ARM FVP port and will be moved to Secure SRAM later. The default translation table setup code assumes that the caller is executing out of secure SRAM. Hence the TSP exports its own translation table setup function. The TSP only services Fast SMCs, is non-reentrant and non-interruptible. It does arithmetic operations on two sets of four operands, one set supplied by the non-secure client, and the other supplied by the TSP dispatcher in EL3. It returns the result according to the Secure Monitor Calling convention standard. This TSP has two functional entry points: - An initial, one-time entry point through which the TSP is initialized and prepares for receiving further requests from secure monitor/dispatcher - A fast SMC service entry point through which the TSP dispatcher requests secure services on behalf of the non-secure client Change-Id: I24377df53399307e2560a025eb2c82ce98ab3931 Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-