1. 21 Jun, 2018 1 commit
    • Jeenu Viswambharan's avatar
      BL31: Introduce jump primitives · e7b9473e
      Jeenu Viswambharan authored
      
      
      This patch introduces setjmp() and ongjmp() primitives to enable
      standard setjmp/longjmp style execution. Both APIs parameters take a
      pointer to struct jmpbuf type, which hosts CPU registers saved/restored
      during jump.
      
      As per the standard usage:
      
        - setjmp() return 0 when a jump is setup; and a non-zero value when
          returning from jump.
      
        - The caller of setjmp() must not return, or otherwise update stack
          pointer since.
      
      Change-Id: I4af1d32e490cfa547979631b762b4cba188d0551
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      e7b9473e
  2. 20 Jun, 2018 1 commit
    • Soby Mathew's avatar
      ARM Platforms: Update CNTFRQ register in CNTCTLBase frame · 342d6220
      Soby Mathew authored
      
      
      Currently TF-A doesn't initialise CNTFRQ register in CNTCTLBase
      frame of the system timer. ARM ARM states that "The instance of
      the register in the CNTCTLBase frame must be programmed with this
      value as part of system initialization."
      
      The psci_arch_setup() updates the CNTFRQ system register but
      according to the ARM ARM, this instance of the register is
      independent of the memory mapped instance. This is only an issue
      for Normal world software which relies on the memory mapped
      instance rather than the system register one.
      
      This patch resolves the issue for ARM platforms.
      
      The patch also solves a related issue on Juno, wherein
      CNTBaseN.CNTFRQ can be written and does not reflect the value of
      the register in CNTCTLBase frame. Hence this patch additionally
      updates CNTFRQ register in the Non Secure frame of the CNTBaseN.
      
      Fixes ARM-Software/tf-issues#593
      
      Change-Id: I09cebb6633688b34d5b1bc349fbde4751025b350
      Signed-off-by: default avatarSoby Mathew <soby.mathew@arm.com>
      342d6220
  3. 04 May, 2018 4 commits
    • Jeenu Viswambharan's avatar
      RAS: Add fault injection support · 1a7c1cfe
      Jeenu Viswambharan authored
      
      
      The ARMv8.4 RAS extensions introduce architectural support for software
      to inject faults into the system in order to test fault-handling
      software. This patch introduces the build option FAULT_HANDLING_SUPPORT
      to allow for lower ELs to use registers in the Standard Error Record to
      inject fault. The build option RAS_EXTENSIONS must also be enabled along
      with fault injection.
      
      This feature is intended for testing purposes only, and is advisable to
      keep disabled for production images.
      
      Change-Id: I6f7a4454b15aec098f9505a10eb188c2f928f7ea
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      1a7c1cfe
    • Jeenu Viswambharan's avatar
      RAS: Add helpers to access Standard Error Records · 30d81c36
      Jeenu Viswambharan authored
      
      
      The ARMv8 RAS Extensions introduced Standard Error Records which are a
      set of standard registers through which:
      
        - Platform can configure RAS node policy; e.g., notification
          mechanism;
      
        - RAS nodes can record and expose error information for error handling
          agents.
      
      Standard Error Records can either be accessed via. memory-mapped
      or System registers. This patch adds helper functions to access
      registers and fields within an error record.
      
      Change-Id: I6594ba799f4a1789d7b1e45b3e17fd40e7e0ba5c
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      30d81c36
    • Jeenu Viswambharan's avatar
      AArch64: Introduce RAS handling · 14c6016a
      Jeenu Viswambharan authored
      
      
      RAS extensions are mandatory for ARMv8.2 CPUs, but are also optional
      extensions to base ARMv8.0 architecture.
      
      This patch adds build system support to enable RAS features in ARM
      Trusted Firmware. A boolean build option RAS_EXTENSION is introduced for
      this.
      
      With RAS_EXTENSION, an Exception Synchronization Barrier (ESB) is
      inserted at all EL3 vector entry and exit. ESBs will synchronize pending
      external aborts before entering EL3, and therefore will contain and
      attribute errors to lower EL execution. Any errors thus synchronized are
      detected via. DISR_EL1 register.
      
      When RAS_EXTENSION is set to 1, HANDLE_EL3_EA_FIRST must also be set to 1.
      
      Change-Id: I38a19d84014d4d8af688bd81d61ba582c039383a
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      14c6016a
    • Jeenu Viswambharan's avatar
      AArch64: Introduce External Abort handling · 76454abf
      Jeenu Viswambharan authored
      
      
      At present, any External Abort routed to EL3 is reported as an unhandled
      exception and cause a panic. This patch enables ARM Trusted Firmware to
      handle External Aborts routed to EL3.
      
      With this patch, when an External Abort is received at EL3, its handling
      is delegated to plat_ea_handler() function. Platforms can provide their
      own implementation of this function. This patch adds a weak definition
      of the said function that prints out a message and just panics.
      
      In order to support handling External Aborts at EL3, the build option
      HANDLE_EA_EL3_FIRST must be set to 1.
      
      Before this patch, HANDLE_EA_EL3_FIRST wasn't passed down to
      compilation; this patch fixes that too.
      
      Change-Id: I4d07b7e65eb191ff72d63b909ae9512478cd01a1
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      76454abf
  4. 27 Apr, 2018 1 commit
  5. 17 Apr, 2018 1 commit
  6. 21 Mar, 2018 1 commit
    • Antonio Nino Diaz's avatar
      Rename 'smcc' to 'smccc' · 085e80ec
      Antonio Nino Diaz authored
      
      
      When the source code says 'SMCC' it is talking about the SMC Calling
      Convention. The correct acronym is SMCCC. This affects a few definitions
      and file names.
      
      Some files have been renamed (smcc.h, smcc_helpers.h and smcc_macros.S)
      but the old files have been kept for compatibility, they include the
      new ones with an ERROR_DEPRECATED guard.
      
      Change-Id: I78f94052a502436fdd97ca32c0fe86bd58173f2f
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      085e80ec
  7. 11 Jan, 2018 3 commits
    • Dimitris Papastamos's avatar
      AMU: Add configuration helpers for aarch64 · 0767d50e
      Dimitris Papastamos authored
      
      
      Add some AMU helper functions to allow configuring, reading and
      writing of the Group 0 and Group 1 counters.  Documentation for these
      helpers will come in a separate patch.
      
      Change-Id: I656e070d2dae830c22414f694aa655341d4e2c40
      Signed-off-by: default avatarDimitris Papastamos <dimitris.papastamos@arm.com>
      0767d50e
    • Dimitris Papastamos's avatar
      Use PFR0 to identify need for mitigation of CVE-2017-5915 · 780edd86
      Dimitris Papastamos authored
      
      
      If the CSV2 field reads as 1 then branch targets trained in one
      context cannot affect speculative execution in a different context.
      In that case skip the workaround on Cortex A75.
      
      Change-Id: I4d5504cba516a67311fb5f0657b08f72909cbd38
      Signed-off-by: default avatarDimitris Papastamos <dimitris.papastamos@arm.com>
      780edd86
    • Dimitris Papastamos's avatar
      Workaround for CVE-2017-5715 on Cortex A73 and A75 · a1781a21
      Dimitris Papastamos authored
      
      
      Invalidate the Branch Target Buffer (BTB) on entry to EL3 by
      temporarily dropping into AArch32 Secure-EL1 and executing the
      `BPIALL` instruction.
      
      This is achieved by using 3 vector tables.  There is the runtime
      vector table which is used to handle exceptions and 2 additional
      tables which are required to implement this workaround.  The
      additional tables are `vbar0` and `vbar1`.
      
      The sequence of events for handling a single exception is
      as follows:
      
      1) Install vector table `vbar0` which saves the CPU context on entry
         to EL3 and sets up the Secure-EL1 context to execute in AArch32 mode
         with the MMU disabled and I$ enabled.  This is the default vector table.
      
      2) Before doing an ERET into Secure-EL1, switch vbar to point to
         another vector table `vbar1`.  This is required to restore EL3 state
         when returning from the workaround, before proceeding with normal EL3
         exception handling.
      
      3) While in Secure-EL1, the `BPIALL` instruction is executed and an
         SMC call back to EL3 is performed.
      
      4) On entry to EL3 from Secure-EL1, the saved context from step 1) is
         restored.  The vbar is switched to point to `vbar0` in preparation to
         handle further exceptions.  Finally a branch to the runtime vector
         table entry is taken to complete the handling of the original
         exception.
      
      This workaround is enabled by default on the affected CPUs.
      
      NOTE
      ====
      
      There are 4 different stubs in Secure-EL1.  Each stub corresponds to
      an exception type such as Sync/IRQ/FIQ/SError.  Each stub will move a
      different value in `R0` before doing an SMC call back into EL3.
      Without this piece of information it would not be possible to know
      what the original exception type was as we cannot use `ESR_EL3` to
      distinguish between IRQs and FIQs.
      
      Change-Id: I90b32d14a3735290b48685d43c70c99daaa4b434
      Signed-off-by: default avatarDimitris Papastamos <dimitris.papastamos@arm.com>
      a1781a21
  8. 30 Nov, 2017 1 commit
    • David Cunado's avatar
      Enable SVE for Non-secure world · 1a853370
      David Cunado authored
      
      
      This patch adds a new build option, ENABLE_SVE_FOR_NS, which when set
      to one EL3 will check to see if the Scalable Vector Extension (SVE) is
      implemented when entering and exiting the Non-secure world.
      
      If SVE is implemented, EL3 will do the following:
      
      - Entry to Non-secure world: SIMD, FP and SVE functionality is enabled.
      
      - Exit from Non-secure world: SIMD, FP and SVE functionality is
        disabled. As SIMD and FP registers are part of the SVE Z-registers
        then any use of SIMD / FP functionality would corrupt the SVE
        registers.
      
      The build option default is 1. The SVE functionality is only supported
      on AArch64 and so the build option is set to zero when the target
      archiecture is AArch32.
      
      This build option is not compatible with the CTX_INCLUDE_FPREGS - an
      assert will be raised on platforms where SVE is implemented and both
      ENABLE_SVE_FOR_NS and CTX_INCLUDE_FPREGS are set to 1.
      
      Also note this change prevents secure world use of FP&SIMD registers on
      SVE-enabled platforms. Existing Secure-EL1 Payloads will not work on
      such platforms unless ENABLE_SVE_FOR_NS is set to 0.
      
      Additionally, on the first entry into the Non-secure world the SVE
      functionality is enabled and the SVE Z-register length is set to the
      maximum size allowed by the architecture. This includes the use case
      where EL2 is implemented but not used.
      
      Change-Id: Ie2d733ddaba0b9bef1d7c9765503155188fe7dae
      Signed-off-by: default avatarDavid Cunado <david.cunado@arm.com>
      1a853370
  9. 29 Nov, 2017 1 commit
  10. 20 Nov, 2017 1 commit
    • Dimitris Papastamos's avatar
      Refactor Statistical Profiling Extensions implementation · 281a08cc
      Dimitris Papastamos authored
      
      
      Factor out SPE operations in a separate file.  Use the publish
      subscribe framework to drain the SPE buffers before entering secure
      world.  Additionally, enable SPE before entering normal world.
      
      A side effect of this change is that the profiling buffers are now
      only drained when a transition from normal world to secure world
      happens.  Previously they were drained also on return from secure
      world, which is unnecessary as SPE is not supported in S-EL1.
      
      Change-Id: I17582c689b4b525770dbb6db098b3a0b5777b70a
      Signed-off-by: default avatarDimitris Papastamos <dimitris.papastamos@arm.com>
      281a08cc
  11. 17 Nov, 2017 1 commit
  12. 13 Nov, 2017 1 commit
  13. 08 Nov, 2017 1 commit
    • Antonio Nino Diaz's avatar
      SPM: Introduce Secure Partition Manager · 2fccb228
      Antonio Nino Diaz authored
      
      
      A Secure Partition is a software execution environment instantiated in
      S-EL0 that can be used to implement simple management and security
      services. Since S-EL0 is an unprivileged exception level, a Secure
      Partition relies on privileged firmware e.g. ARM Trusted Firmware to be
      granted access to system and processor resources. Essentially, it is a
      software sandbox that runs under the control of privileged software in
      the Secure World and accesses the following system resources:
      
      - Memory and device regions in the system address map.
      - PE system registers.
      - A range of asynchronous exceptions e.g. interrupts.
      - A range of synchronous exceptions e.g. SMC function identifiers.
      
      A Secure Partition enables privileged firmware to implement only the
      absolutely essential secure services in EL3 and instantiate the rest in
      a partition. Since the partition executes in S-EL0, its implementation
      cannot be overly complex.
      
      The component in ARM Trusted Firmware responsible for managing a Secure
      Partition is called the Secure Partition Manager (SPM). The SPM is
      responsible for the following:
      
      - Validating and allocating resources requested by a Secure Partition.
      - Implementing a well defined interface that is used for initialising a
        Secure Partition.
      - Implementing a well defined interface that is used by the normal world
        and other secure services for accessing the services exported by a
        Secure Partition.
      - Implementing a well defined interface that is used by a Secure
        Partition to fulfil service requests.
      - Instantiating the software execution environment required by a Secure
        Partition to fulfil a service request.
      
      Change-Id: I6f7862d6bba8732db5b73f54e789d717a35e802f
      Co-authored-by: default avatarDouglas Raillard <douglas.raillard@arm.com>
      Co-authored-by: default avatarSandrine Bailleux <sandrine.bailleux@arm.com>
      Co-authored-by: default avatarAchin Gupta <achin.gupta@arm.com>
      Co-authored-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      2fccb228
  14. 17 Oct, 2017 1 commit
  15. 16 Oct, 2017 4 commits
  16. 13 Oct, 2017 1 commit
    • David Cunado's avatar
      Init and save / restore of PMCR_EL0 / PMCR · 3e61b2b5
      David Cunado authored
      
      
      Currently TF does not initialise the PMCR_EL0 register in
      the secure context or save/restore the register.
      
      In particular, the DP field may not be set to one to prohibit
      cycle counting in the secure state, even though event counting
      generally is prohibited via the default setting of MDCR_EL3.SMPE
      to 0.
      
      This patch initialises PMCR_EL0.DP to one in the secure state
      to prohibit cycle counting and also initialises other fields
      that have an architectually UNKNOWN reset value.
      
      Additionally, PMCR_EL0 is added to the list of registers that are
      saved and restored during a world switch.
      
      Similar changes are made for PMCR for the AArch32 execution state.
      
      NOTE: secure world code at lower ELs that assume other values in PMCR_EL0
      will be impacted.
      
      Change-Id: Iae40e8c0a196d74053accf97063ebc257b4d2f3a
      Signed-off-by: default avatarDavid Cunado <david.cunado@arm.com>
      3e61b2b5
  17. 21 Sep, 2017 2 commits
    • Antonio Nino Diaz's avatar
      Fix type of `unsigned long` constants · e47ac1fd
      Antonio Nino Diaz authored
      
      
      The type `unsigned long` is 32 bit wide in AArch32, but 64 bit wide in
      AArch64. This is inconsistent and that's why we avoid using it as per
      the Coding Guidelines. This patch changes all `UL` occurrences to `U`
      or `ULL` depending on the context so that the size of the constant is
      clear.
      
      This problem affected the macro `BIT(nr)`. As long as this macro is used
      to fill fields of registers, that's not a problem, since all registers
      are 32 bit wide in AArch32 and 64 bit wide in AArch64. However, if the
      macro is used to fill the fields of a 64-bit integer, it won't be able
      to set the upper 32 bits in AArch32.
      
      By changing the type of this macro to `unsigned long long` the behaviour
      is always the same regardless of the architecture, as this type is
      64-bit wide in both cases.
      
      Some Tegra platform files have been modified by this patch.
      
      Change-Id: I918264c03e7d691a931f0d1018df25a2796cc221
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      e47ac1fd
    • Antonio Nino Diaz's avatar
      Set TCR_EL1.EPD1 bit to 1 · 3388b38d
      Antonio Nino Diaz authored
      
      
      In the S-EL1&0 translation regime we aren't using the higher VA range,
      whose translation table base address is held in TTBR1_EL1. The bit
      TCR_EL1.EPD1 can be used to disable translations using TTBR1_EL1, but
      the code wasn't setting it to 1. Additionally, other fields in TCR1_EL1
      associated with the higher VA range (TBI1, TG1, SH1, ORGN1, IRGN1 and
      A1) weren't set correctly as they were left as 0. In particular, 0 is a
      reserved value for TG1. Also, TBBR1_EL1 was not explicitly set and its
      reset value is UNKNOWN.
      
      Therefore memory accesses to the higher VA range would result in
      unpredictable behaviour as a translation table walk would be attempted
      using an UNKNOWN value in TTBR1_EL1.
      
      On the FVP and Juno platforms accessing the higher VA range resulted in
      a translation fault, but this may not always be the case on all
      platforms.
      
      This patch sets the bit TCR_EL1.EPD1 to 1 so that any kind of
      unpredictable behaviour is prevented.
      
      This bug only affects the AArch64 version of the code, the AArch32
      version sets this bit to 1 as expected.
      
      Change-Id: I481c000deda5bc33a475631301767b9e0474a303
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      3388b38d
  18. 11 Sep, 2017 1 commit
  19. 24 Aug, 2017 1 commit
    • Isla Mitchell's avatar
      Enable CnP bit for ARMv8.2 CPUs · 9fce2725
      Isla Mitchell authored
      
      
      This patch enables the CnP (Common not Private) bit for secure page
      tables so that multiple PEs in the same Inner Shareable domain can use
      the same translation table entries for a given stage of translation in
      a particular translation regime. This only takes effect when ARM
      Trusted Firmware is built with ARM_ARCH_MINOR >= 2.
      
      ARM Trusted Firmware Design has been updated to include a description
      of this feature usage.
      
      Change-Id: I698305f047400119aa1900d34c65368022e410b8
      Signed-off-by: default avatarIsla Mitchell <isla.mitchell@arm.com>
      9fce2725
  20. 22 Jun, 2017 1 commit
    • dp-arm's avatar
      aarch64: Enable Statistical Profiling Extensions for lower ELs · d832aee9
      dp-arm authored
      
      
      SPE is only supported in non-secure state.  Accesses to SPE specific
      registers from SEL1 will trap to EL3.  During a world switch, before
      `TTBR` is modified the SPE profiling buffers are drained.  This is to
      avoid a potential invalid memory access in SEL1.
      
      SPE is architecturally specified only for AArch64.
      
      Change-Id: I04a96427d9f9d586c331913d815fdc726855f6b0
      Signed-off-by: default avatardp-arm <dimitris.papastamos@arm.com>
      d832aee9
  21. 21 Jun, 2017 1 commit
    • David Cunado's avatar
      Fully initialise essential control registers · 18f2efd6
      David Cunado authored
      
      
      This patch updates the el3_arch_init_common macro so that it fully
      initialises essential control registers rather then relying on hardware
      to set the reset values.
      
      The context management functions are also updated to fully initialise
      the appropriate control registers when initialising the non-secure and
      secure context structures and when preparing to leave EL3 for a lower
      EL.
      
      This gives better alignement with the ARM ARM which states that software
      must initialise RES0 and RES1 fields with 0 / 1.
      
      This patch also corrects the following typos:
      
      "NASCR definitions" -> "NSACR definitions"
      
      Change-Id: Ia8940b8351dc27bc09e2138b011e249655041cfc
      Signed-off-by: default avatarDavid Cunado <david.cunado@arm.com>
      18f2efd6
  22. 15 Jun, 2017 1 commit
  23. 04 May, 2017 1 commit
    • Jeenu Viswambharan's avatar
      Introduce ARM SiP service to switch execution state · b10d4499
      Jeenu Viswambharan authored
      
      
      In AArch64, privileged exception levels control the execution state
      (a.k.a. register width) of the immediate lower Exception Level; i.e.
      whether the lower exception level executes in AArch64 or AArch32 state.
      For an exception level to have its execution state changed at run time,
      it must request the change by raising a synchronous exception to the
      higher exception level.
      
      This patch implements and adds such a provision to the ARM SiP service,
      by which an immediate lower exception level can request to switch its
      execution state. The execution state is switched if the request is:
      
        - raised from non-secure world;
      
        - raised on the primary CPU, before any secondaries are brought online
          with CPU_ON PSCI call;
      
        - raised from an exception level immediately below EL3: EL2, if
          implemented; otherwise NS EL1.
      
      If successful, the SMC doesn't return to the caller, but to the entry
      point supplied with the call. Otherwise, the caller will observe the SMC
      returning with STATE_SW_E_DENIED code. If ARM Trusted Firmware is built
      for AArch32, the feature is not supported, and the call will always
      fail.
      
      For the ARM SiP service:
      
        - Add SMC function IDs for both AArch32 and AArch64;
        - Increment the SiP service minor version to 2;
        - Adjust the number of supported SiP service calls.
      
      Add documentation for ARM SiP service.
      
      Fixes ARM-software/tf-issues#436
      
      Change-Id: I4347f2d6232e69fbfbe333b340fcd0caed0a4cea
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      b10d4499
  24. 03 May, 2017 1 commit
  25. 02 May, 2017 1 commit
  26. 29 Apr, 2017 1 commit
    • Scott Branden's avatar
      Move defines in utils.h to utils_def.h to fix shared header compile issues · 53d9c9c8
      Scott Branden authored
      
      
      utils.h is included in various header files for the defines in it.
      Some of the other header files only contain defines.  This allows the
      header files to be shared between host and target builds for shared defines.
      
      Recently types.h has been included in utils.h as well as some function
      prototypes.
      
      Because of the inclusion of types.h conflicts exist building host tools
      abd these header files now.  To solve this problem,
      move the defines to utils_def.h and have this included by utils.h and
      change header files to only include utils_def.h and not pick up the new
      types.h being introduced.
      
      Fixes ARM-software/tf-issues#461
      Signed-off-by: default avatarScott Branden <scott.branden@broadcom.com>
      
      Remove utils_def.h from utils.h
      
      This patch removes utils_def.h from utils.h as it is not required.
      And also makes a minor change to ensure Juno platform compiles.
      
      Change-Id: I10cf1fb51e44a8fa6dcec02980354eb9ecc9fa29
      53d9c9c8
  27. 20 Apr, 2017 1 commit
    • Yatharth Kochar's avatar
      Changes to support execution in AArch32 state for JUNO · 07570d59
      Yatharth Kochar authored
      
      
      Following steps are required to boot JUNO in AArch32 state:
      1> BL1, in AArch64 state, loads BL2.
      2> BL2, in AArch64 state, initializes DDR.
        Loads SP_MIN & BL33 (AArch32 executable)images.
        Calls RUN_IMAGE SMC to go back to BL1.
      3> BL1 writes AArch32 executable opcodes, to load and branch
        at the entrypoint address of SP_MIN, at HI-VECTOR address and
        then request for warm reset in AArch32 state using RMR_EL3.
      
      This patch makes following changes to facilitate above steps:
      * Added assembly function to carry out step 3 above.
      * Added region in TZC that enables Secure access to the
        HI-VECTOR(0xFFFF0000) address space.
      * AArch32 image descriptor is used, in BL2, to load
        SP_MIN and BL33 AArch32 executable images.
      
      A new flag `JUNO_AARCH32_EL3_RUNTIME` is introduced that
      controls above changes. By default this flag is disabled.
      
      NOTE: BL1 and BL2 are not supported in AArch32 state for JUNO.
      
      Change-Id: I091d56a0e6d36663e6d9d2bb53c92c672195d1ec
      Signed-off-by: default avatarYatharth Kochar <yatharth.kochar@arm.com>
      Signed-off-by: default avatardp-arm <dimitris.papastamos@arm.com>
      07570d59
  28. 13 Apr, 2017 1 commit
    • Vignesh Radhakrishnan's avatar
      Tegra: Add support for fake system suspend · a9e0260c
      Vignesh Radhakrishnan authored
      
      
      This patch adds support for fake system suspend (SC7).
      This is a debug mode, to ensure that a different code path is
      executed for cases like pre-silicon development, where a
      full-fledged SC7 is not possible in early stages.
      
      This particular patch ensures that, if fake system suspend is
      enabled (denoted by tegra_fake_system_suspend variable
      having a non-zero value), instead of calling WFI, a request
      for a warm reset is made for starting the SC7 exit procedure.
      
      This ensures that the code path of kernel->ATF and back to
      kernel is executed without depending on other components
      involved in SC7 code path.
      
      Additionally, this patch also adds support for SMC call
      from kernel, enabling fake system suspend mode.
      Signed-off-by: default avatarVignesh Radhakrishnan <vigneshr@nvidia.com>
      Signed-off-by: default avatarVarun Wadekar <vwadekar@nvidia.com>
      a9e0260c
  29. 27 Mar, 2017 1 commit
    • Summer Qin's avatar
      ARM platforms: Add support for MT bit in MPIDR · d8d6cf24
      Summer Qin authored
      
      
      This patch modifies some of the functions in ARM platform layer to cater
      for the case when multi-threading `MT` is set in MPIDR. A new build flag
      `ARM_PLAT_MT` is added, and when enabled, the functions accessing MPIDR
      now assume that the `MT` bit is set for the platform and access the bit
      fields accordingly.
      
      Also, a new API plat_arm_get_cpu_pe_count is added when `ARM_PLAT_MT` is
      enabled, returning the PE count within the physical cpu corresponding to
      `mpidr`.
      
      Change-Id: I04ccf212ac3054a60882761f4087bae299af13cb
      Signed-off-by: default avatarSummer Qin <summer.qin@arm.com>
      d8d6cf24
  30. 08 Mar, 2017 2 commits
    • Antonio Nino Diaz's avatar
      Apply workaround for errata 813419 of Cortex-A57 · ccbec91c
      Antonio Nino Diaz authored
      
      
      TLBI instructions for EL3 won't have the desired effect under specific
      circumstances in Cortex-A57 r0p0. The workaround is to execute DSB and
      TLBI twice each time.
      
      Even though this errata is only needed in r0p0, the current errata
      framework is not prepared to apply run-time workarounds. The current one
      is always applied if compiled in, regardless of the CPU or its revision.
      
      This errata has been enabled for Juno.
      
      The `DSB` instruction used when initializing the translation tables has
      been changed to `DSB ISH` as an optimization and to be consistent with
      the barriers used for the workaround.
      
      Change-Id: Ifc1d70b79cb5e0d87e90d88d376a59385667d338
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      ccbec91c
    • Antonio Nino Diaz's avatar
      Add dynamic region support to xlat tables lib v2 · 0b64f4ef
      Antonio Nino Diaz authored
      
      
      Added APIs to add and remove regions to the translation tables
      dynamically while the MMU is enabled. Only static regions are allowed
      to overlap other static ones (for backwards compatibility).
      
      A new private attribute (MT_DYNAMIC / MT_STATIC) has been added to
      flag each region as such.
      
      The dynamic mapping functionality can be enabled or disabled when
      compiling by setting the build option PLAT_XLAT_TABLES_DYNAMIC to 1
      or 0. This can be done per-image.
      
      TLB maintenance code during dynamic table mapping and unmapping has
      also been added.
      
      Fixes ARM-software/tf-issues#310
      
      Change-Id: I19e8992005c4292297a382824394490c5387aa3b
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      0b64f4ef