- 24 Jul, 2015 8 commits
-
-
danh-arm authored
tlkd: delete 'NEED_BL32' build variable
-
Varun Wadekar authored
Remove the 'NEED_BL32' flag from the makefile. TLK compiles using a completely different build system and is present on the device as a binary blob. The NEED_BL32 flag does not influence the TLK load/boot sequence at all. Moreover, it expects that TLK binary be present on the host before we can compile BL31 support for Tegra. This patch removes the flag from the makefile and thus decouples both the build systems. Tested by booting TLK without the NEED_BL32 flag. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
danh-arm authored
Tegra denver plat support v3
-
Varun Wadekar authored
This patch modifies the 'BUILD_PLAT' makefile variable to point to the soc specific build directory in order to allow each Tegra soc to have its own build directory. This way we can keep the build outputs separate and can keep multiple soc specific builds alive at the same time. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
This patch implements support for T132 (Denver CPU) based Tegra platforms. The following features have been added: * SiP calls to switch T132 CPU's AARCH mode * Complete PSCI support, including 'System Suspend' * Platform specific MMIO settings * Locking of CPU vector registers Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
Denver is NVIDIA's own custom-designed, 64-bit, dual-core CPU which is fully ARMv8 architecture compatible. Each of the two Denver cores implements a 7-way superscalar microarchitecture (up to 7 concurrent micro-ops can be executed per clock), and includes a 128KB 4-way L1 instruction cache, a 64KB 4-way L1 data cache, and a 2MB 16-way L2 cache, which services both cores. Denver implements an innovative process called Dynamic Code Optimization, which optimizes frequently used software routines at runtime into dense, highly tuned microcode-equivalent routines. These are stored in a dedicated, 128MB main-memory-based optimization cache. After being read into the instruction cache, the optimized micro-ops are executed, re-fetched and executed from the instruction cache as long as needed and capacity allows. Effectively, this reduces the need to re-optimize the software routines. Instead of using hardware to extract the instruction-level parallelism (ILP) inherent in the code, Denver extracts the ILP once via software techniques, and then executes those routines repeatedly, thus amortizing the cost of ILP extraction over the many execution instances. Denver also features new low latency power-state transitions, in addition to extensive power-gating and dynamic voltage and clock scaling based on workloads. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
The validate_power_state() handler checks the power_state for a valid afflvl and state id. Although the afflvl check is common, the state ids are implementation defined. This patch moves the handler to the tegra/soc folder to allow each SoC to validate the power_state for supported parameters. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
This patch moves the inclusion of CPU code (A53, A57) to T210's makefile. This way we can reduce code size for Tegra platforms by including only the required CPU files. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
- 17 Jul, 2015 12 commits
-
-
danh-arm authored
Tegra misc fixes v3
-
Varun Wadekar authored
A new config, ENABLE_NS_L2_CPUECTRL_RW_ACCESS, allows Tegra platforms to enable read/write access to the L2 and CPUECTRL registers. T210 is the only platform that needs to enable this config for now. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
This patch locks access to the PMC registers which hold the CPU reset vector addresses. The PMC registers are used by the warmboot code and must be locked during boot/resume to avoid booting into custom firmware installed by unknown parties e.g. hackers. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
The PMC Scratch22 register contains the CPU reset vector to be used by the warmboot code to power up the CPU while resuming from system suspend. This patch locks this PMC register to avoid any further writes. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
This patch checks if the target CPU is already online before proceeding with it's power ON sequence. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
This patch de-asserts the CPU reset signals for each CPU as part of it's power on sequence. This is needed to get rid of the wait in BPMP firmware during SC7 exit. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
This patch fixes the delay loop used to wake up the BPMP during SC7 exit. The earlier loop would fail just when the timer was about to wrap-around (e.g. when TEGRA_TMRUS_BASE is 0xfffffffe, the target value becomes 0, which would cause the loop to exit before it's expiry). Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
Varun Wadekar authored
This patch introduces the backend required for implementing the delay timer API. Tegra has an on-chip free flowing us timer which can be used as the delay timer. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
danh-arm authored
Update user guide to use Linaro releases
-
danh-arm authored
Fix bug in semihosting write function
-
danh-arm authored
Use uintptr_t as base address type in ARM driver APIs
-
Varun Wadekar authored
This patch sets the 'USE_COHERENT_MEM' flag to '0', so that the coherent memory region will not be included in the memory map. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
- 16 Jul, 2015 1 commit
-
-
Juan Castillo authored
The return value from the SYS_WRITE semihosting operation is 0 if the call is successful or the number of bytes not written, if there is an error. The implementation of the write function in the semihosting driver treats the return value as the number of bytes written, which is wrong. This patch fixes it. Change-Id: Id39dac3d17b5eac557408b8995abe90924c85b85
-
- 15 Jul, 2015 1 commit
-
-
Sandrine Bailleux authored
Linaro produce monthly software releases for the Juno and AEMv8-FVP platforms. These provide an integrated set of software components that have been tested together on these platforms. From now on, it is recommend that Trusted Firmware developers use the Linaro releases (currently 15.06) as a baseline for the dependent software components: normal world firmware, Linux kernel and device tree, file system as well as any additional micro-controller firmware required by the platform. This patch updates the user guide to document this new process. It changes the instructions to get the source code of the full software stack (including Trusted Firmware) and updates the dependency build instructions to make use of the build scripts that the Linaro releases provide. Change-Id: Ia8bd043f4b74f1e1b10ef0d12cc8a56ed3c92b6e
-
- 09 Jul, 2015 1 commit
-
-
Juan Castillo authored
This patch changes the type of the base address parameter in the ARM device driver APIs to uintptr_t (GIC, CCI, TZC400, PL011). The uintptr_t type allows coverage of the whole memory space and to perform arithmetic operations on the addresses. ARM platform code has also been updated to use uintptr_t as GIC base address in the configuration. Fixes ARM-software/tf-issues#214 Change-Id: I1b87daedadcc8b63e8f113477979675e07d788f1
-
- 07 Jul, 2015 1 commit
-
-
Achin Gupta authored
Implement get_sys_suspend_power_state() handler for Tegra
-
- 06 Jul, 2015 1 commit
-
-
Varun Wadekar authored
This patch implements the get_sys_suspend_power_state() handler required by the PSCI SYSTEM_SUSPEND API. The intent of this handler is to return the appropriate State-ID field which can be utilized in `affinst_suspend()` to suspend to system affinity level. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
- 02 Jul, 2015 1 commit
-
-
danh-arm authored
PSCI: Add SYSTEM_SUSPEND API support
-
- 01 Jul, 2015 2 commits
-
-
Achin Gupta authored
TBB: build 'cert_create' with ECDSA only if OpenSSL supports it
-
Juan Castillo authored
Some Linux distributions include an OpenSSL library which has been built without ECDSA support. Trying to build the certificate generation tool on those distributions will result in a build error. This patch fixes that issue by including ECDSA support only if OpenSSL has been built with ECDSA. In that case, the OpenSSL configuration file does not define the OPENSSL_NO_EC macro. The tool will build successfully, although the resulting binary will not support ECDSA keys. Change-Id: I4627d1abd19eef7ad3251997d8218599187eb902
-
- 25 Jun, 2015 12 commits
-
-
danh-arm authored
Authentication Framework
-
Juan Castillo authored
This patch updates the user guide, adding instructions to build the Trusted Firmware with Trusted Board Support using the new framework. It also provides documentation about the framework itself, including a detailed section about the TBBR implementation using the framework. Change-Id: I0849fce9c5294cd4f52981e7a8423007ac348ec6
-
Juan Castillo authored
The authentication framework deprecates plat_match_rotpk() in favour of plat_get_rotpk_info(). This patch removes plat_match_rotpk() from the platform port. Change-Id: I2250463923d3ef15496f9c39678b01ee4b33883b
-
Juan Castillo authored
After updating the main authentication module to use the transport and crypto modules and the CoT description, the PolarSSL authentication module is no longer required. This patch deletes it. Change-Id: I8ba1e13fc1cc7b2fa9df14ff59eb798f0460b878
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-
Juan Castillo authored
This patch extends the 'cert_create' tool to support ECDSA keys to sign the certificates. The '--key-alg' command line option can be used to specify the key algorithm when invoking the tool. Available options are: * 'rsa': create RSA-2048 keys (default option) * 'ecdsa': create ECDSA-SECP256R1 keys The TF Makefile has been updated to allow the platform to specify the key algorithm by declaring the 'KEY_ALG' variable in the platform makefile. The behaviour regarding key management has changed. After applying this patch, the tool will try first to open the keys from disk. If one key does not exist or no key is specified, and the command line option to create keys has been specified, new keys will be created. Otherwise an error will be generated and the tool will exit. This way, the user may specify certain keys while the tool will create the remaining ones. This feature is useful for testing purposes and CI infrastructures. The OpenSSL directory may be specified using the build option 'OPENSSL_DIR' when building the certificate generation tool. Default is '/usr'. Change-Id: I98bcc2bfab28dd7179f17f1177ea7a65698df4e7
-
Juan Castillo authored
This patch adds a CoT based on the Trusted Board Boot Requirements document*. The CoT consists of an array of authentication image descriptors indexed by the image identifiers. A new header file with TBBR image identifiers has been added. Platforms that use the TBBR (i.e. ARM platforms) may reuse these definitions as part of their platform porting. PLATFORM PORT - IMPORTANT: Default image IDs have been removed from the platform common definitions file (common_def.h). As a consequence, platforms that used those common definitons must now either include the IDs provided by the TBBR header file or define their own IDs. *The NVCounter authentication method has not been implemented yet. Change-Id: I7c4d591863ef53bb0cd4ce6c52a60b06fa0102d5
-
Juan Castillo authored
This patch adds the following mbedTLS based libraries: * Cryptographic library It is used by the crypto module to verify a digital signature and a hash. This library relies on mbedTLS to perform the cryptographic operations. mbedTLS sources must be obtained separately. Two key algorithms are currently supported: * RSA-2048 * ECDSA-SECP256R1 The platform is responsible for picking up the required algorithm by defining the 'MBEDTLS_KEY_ALG' variable in the platform makefile. Available options are: * 'rsa' (for RSA-2048) (default option) * 'ecdsa' (for ECDSA-SECP256R1) Hash algorithm currently supported is SHA-256. * Image parser library Used by the image parser module to extract the authentication parameters stored in X509v3 certificates. Change-Id: I597c4be3d29287f2f18b82846973afc142ee0bf0
-
Juan Castillo authored
This patch adds the authentication framework that will be used as the base to implement Trusted Board Boot in the Trusted Firmware. The framework comprises the following modules: - Image Parser Module (IPM) This module is responsible for interpreting images, check their integrity and extract authentication information from them during Trusted Board Boot. The module currently supports three types of images i.e. raw binaries, X509v3 certificates and any type specific to a platform. An image parser library must be registered for each image type (the only exception is the raw image parser, which is included in the main module by default). Each parser library (if used) must export a structure in a specific linker section which contains function pointers to: 1. Initialize the library 2. Check the integrity of the image type supported by the library 3. Extract authentication information from the image - Cryptographic Module (CM) This module is responsible for verifying digital signatures and hashes. It relies on an external cryptographic library to perform the cryptographic operations. To register a cryptographic library, the library must use the REGISTER_CRYPTO_LIB macro, passing function pointers to: 1. Initialize the library 2. Verify a digital signature 3. Verify a hash Failing to register a cryptographic library will generate a build time error. - Authentication Module (AM) This module provides methods to authenticate an image, like hash comparison or digital signatures. It uses the image parser module to extract authentication parameters, the crypto module to perform cryptographic operations and the Chain of Trust to authenticate the images. The Chain of Trust (CoT) is a data structure that defines the dependencies between images and the authentication methods that must be followed to authenticate an image. The Chain of Trust, when added, must provide a header file named cot_def.h with the following definitions: - COT_MAX_VERIFIED_PARAMS Integer value indicating the maximum number of authentication parameters an image can present. This value will be used by the authentication module to allocate the memory required to load the parameters in the image descriptor. Change-Id: Ied11bd5cd410e1df8767a1df23bb720ce7e58178
-
Juan Castillo authored
This patch extends the platform port by adding an API that returns either the Root of Trust public key (ROTPK) or its hash. This is usually stored in ROM or eFUSE memory. The ROTPK returned must be encoded in DER format according to the following ASN.1 structure: SubjectPublicKeyInfo ::= SEQUENCE { algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING } In case the platform returns a hash of the key: DigestInfo ::= SEQUENCE { digestAlgorithm AlgorithmIdentifier, keyDigest OCTET STRING } An implementation for ARM development platforms is provided in this patch. When TBB is enabled, the ROTPK hash location must be specified using the build option 'ARM_ROTPK_LOCATION'. Available options are: - 'regs' : return the ROTPK hash stored in the Trusted root-key storage registers. - 'devel_rsa' : return a ROTPK hash embedded in the BL1 and BL2 binaries. This hash has been obtained from the development RSA public key located in 'plat/arm/board/common/rotpk'. On FVP, the number of MMU tables has been increased to map and access the ROTPK registers. A new file 'board_common.mk' has been added to improve code sharing in the ARM develelopment platforms. Change-Id: Ib25862e5507d1438da10773e62bd338da8f360bf
-
Juan Castillo authored
The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type 'io_uuid_spec_t' has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --> uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
-
Juan Castillo authored
Using assert() to check the length of keys and hashes included in a certificate is not a safe approach because assert() only applies to debug builds. A malformed certificate could exploit security flaws in release binaries due to buffer overflows. This patch replaces assert() with runtime checkings in the PolarSSL authentication module, so malformed certificates can not cause a memory overflow. Change-Id: I42ba912020595752c806cbd242fe3c74077d993b
-