sha3_test.go 8.68 KB
Newer Older
Jeromy's avatar
Jeromy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package sha3

// Tests include all the ShortMsgKATs provided by the Keccak team at
// https://github.com/gvanas/KeccakCodePackage
//
// They only include the zero-bit case of the bitwise testvectors
// published by NIST in the draft of FIPS-202.

import (
	"bytes"
	"compress/flate"
	"encoding/hex"
	"encoding/json"
	"hash"
	"os"
	"strings"
	"testing"
)

const (
	testString  = "brekeccakkeccak koax koax"
	katFilename = "testdata/keccakKats.json.deflate"
)

// Internal-use instances of SHAKE used to test against KATs.
func newHashShake128() hash.Hash {
	return &state{rate: 168, dsbyte: 0x1f, outputLen: 512}
}
func newHashShake256() hash.Hash {
	return &state{rate: 136, dsbyte: 0x1f, outputLen: 512}
}

// testDigests contains functions returning hash.Hash instances
// with output-length equal to the KAT length for both SHA-3 and
// SHAKE instances.
var testDigests = map[string]func() hash.Hash{
	"SHA3-224": New224,
	"SHA3-256": New256,
	"SHA3-384": New384,
	"SHA3-512": New512,
	"SHAKE128": newHashShake128,
	"SHAKE256": newHashShake256,
}

// testShakes contains functions that return ShakeHash instances for
// testing the ShakeHash-specific interface.
var testShakes = map[string]func() ShakeHash{
	"SHAKE128": NewShake128,
	"SHAKE256": NewShake256,
}

// decodeHex converts a hex-encoded string into a raw byte string.
func decodeHex(s string) []byte {
	b, err := hex.DecodeString(s)
	if err != nil {
		panic(err)
	}
	return b
}

// structs used to marshal JSON test-cases.
type KeccakKats struct {
	Kats map[string][]struct {
		Digest  string `json:"digest"`
		Length  int64  `json:"length"`
		Message string `json:"message"`
	}
}

func testUnalignedAndGeneric(t *testing.T, testf func(impl string)) {
	xorInOrig, copyOutOrig := xorIn, copyOut
	xorIn, copyOut = xorInGeneric, copyOutGeneric
	testf("generic")
	if xorImplementationUnaligned != "generic" {
		xorIn, copyOut = xorInUnaligned, copyOutUnaligned
		testf("unaligned")
	}
	xorIn, copyOut = xorInOrig, copyOutOrig
}

// TestKeccakKats tests the SHA-3 and Shake implementations against all the
// ShortMsgKATs from https://github.com/gvanas/KeccakCodePackage
// (The testvectors are stored in keccakKats.json.deflate due to their length.)
func TestKeccakKats(t *testing.T) {
	testUnalignedAndGeneric(t, func(impl string) {
		// Read the KATs.
		deflated, err := os.Open(katFilename)
		if err != nil {
			t.Errorf("error opening %s: %s", katFilename, err)
		}
		file := flate.NewReader(deflated)
		dec := json.NewDecoder(file)
		var katSet KeccakKats
		err = dec.Decode(&katSet)
		if err != nil {
			t.Errorf("error decoding KATs: %s", err)
		}

		// Do the KATs.
		for functionName, kats := range katSet.Kats {
			d := testDigests[functionName]()
			for _, kat := range kats {
				d.Reset()
				in, err := hex.DecodeString(kat.Message)
				if err != nil {
					t.Errorf("error decoding KAT: %s", err)
				}
				d.Write(in[:kat.Length/8])
				got := strings.ToUpper(hex.EncodeToString(d.Sum(nil)))
				if got != kat.Digest {
					t.Errorf("function=%s, implementation=%s, length=%d\nmessage:\n  %s\ngot:\n  %s\nwanted:\n %s",
						functionName, impl, kat.Length, kat.Message, got, kat.Digest)
					t.Logf("wanted %+v", kat)
					t.FailNow()
				}
				continue
			}
		}
	})
}

// TestUnalignedWrite tests that writing data in an arbitrary pattern with
// small input buffers.
func testUnalignedWrite(t *testing.T) {
	testUnalignedAndGeneric(t, func(impl string) {
		buf := sequentialBytes(0x10000)
		for alg, df := range testDigests {
			d := df()
			d.Reset()
			d.Write(buf)
			want := d.Sum(nil)
			d.Reset()
			for i := 0; i < len(buf); {
				// Cycle through offsets which make a 137 byte sequence.
				// Because 137 is prime this sequence should exercise all corner cases.
				offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1}
				for _, j := range offsets {
					if v := len(buf) - i; v < j {
						j = v
					}
					d.Write(buf[i : i+j])
					i += j
				}
			}
			got := d.Sum(nil)
			if !bytes.Equal(got, want) {
				t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want)
			}
		}
	})
}

// TestAppend checks that appending works when reallocation is necessary.
func TestAppend(t *testing.T) {
	testUnalignedAndGeneric(t, func(impl string) {
		d := New224()

		for capacity := 2; capacity <= 66; capacity += 64 {
			// The first time around the loop, Sum will have to reallocate.
			// The second time, it will not.
			buf := make([]byte, 2, capacity)
			d.Reset()
			d.Write([]byte{0xcc})
			buf = d.Sum(buf)
			expected := "0000DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
			if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
				t.Errorf("got %s, want %s", got, expected)
			}
		}
	})
}

// TestAppendNoRealloc tests that appending works when no reallocation is necessary.
func TestAppendNoRealloc(t *testing.T) {
	testUnalignedAndGeneric(t, func(impl string) {
		buf := make([]byte, 1, 200)
		d := New224()
		d.Write([]byte{0xcc})
		buf = d.Sum(buf)
		expected := "00DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
		if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
			t.Errorf("%s: got %s, want %s", impl, got, expected)
		}
	})
}

// TestSqueezing checks that squeezing the full output a single time produces
// the same output as repeatedly squeezing the instance.
func TestSqueezing(t *testing.T) {
	testUnalignedAndGeneric(t, func(impl string) {
		for functionName, newShakeHash := range testShakes {
			d0 := newShakeHash()
			d0.Write([]byte(testString))
			ref := make([]byte, 32)
			d0.Read(ref)

			d1 := newShakeHash()
			d1.Write([]byte(testString))
			var multiple []byte
			for _ = range ref {
				one := make([]byte, 1)
				d1.Read(one)
				multiple = append(multiple, one...)
			}
			if !bytes.Equal(ref, multiple) {
				t.Errorf("%s (%s): squeezing %d bytes one at a time failed", functionName, impl, len(ref))
			}
		}
	})
}

// sequentialBytes produces a buffer of size consecutive bytes 0x00, 0x01, ..., used for testing.
func sequentialBytes(size int) []byte {
	result := make([]byte, size)
	for i := range result {
		result[i] = byte(i)
	}
	return result
}

// BenchmarkPermutationFunction measures the speed of the permutation function
// with no input data.
func BenchmarkPermutationFunction(b *testing.B) {
	b.SetBytes(int64(200))
	var lanes [25]uint64
	for i := 0; i < b.N; i++ {
		keccakF1600(&lanes)
	}
}

// benchmarkHash tests the speed to hash num buffers of buflen each.
func benchmarkHash(b *testing.B, h hash.Hash, size, num int) {
	b.StopTimer()
	h.Reset()
	data := sequentialBytes(size)
	b.SetBytes(int64(size * num))
	b.StartTimer()

	var state []byte
	for i := 0; i < b.N; i++ {
		for j := 0; j < num; j++ {
			h.Write(data)
		}
		state = h.Sum(state[:0])
	}
	b.StopTimer()
	h.Reset()
}

// benchmarkShake is specialized to the Shake instances, which don't
// require a copy on reading output.
func benchmarkShake(b *testing.B, h ShakeHash, size, num int) {
	b.StopTimer()
	h.Reset()
	data := sequentialBytes(size)
	d := make([]byte, 32)

	b.SetBytes(int64(size * num))
	b.StartTimer()

	for i := 0; i < b.N; i++ {
		h.Reset()
		for j := 0; j < num; j++ {
			h.Write(data)
		}
		h.Read(d)
	}
}

func BenchmarkSha3_512_MTU(b *testing.B) { benchmarkHash(b, New512(), 1350, 1) }
func BenchmarkSha3_384_MTU(b *testing.B) { benchmarkHash(b, New384(), 1350, 1) }
func BenchmarkSha3_256_MTU(b *testing.B) { benchmarkHash(b, New256(), 1350, 1) }
func BenchmarkSha3_224_MTU(b *testing.B) { benchmarkHash(b, New224(), 1350, 1) }

func BenchmarkShake128_MTU(b *testing.B)  { benchmarkShake(b, NewShake128(), 1350, 1) }
func BenchmarkShake256_MTU(b *testing.B)  { benchmarkShake(b, NewShake256(), 1350, 1) }
func BenchmarkShake256_16x(b *testing.B)  { benchmarkShake(b, NewShake256(), 16, 1024) }
func BenchmarkShake256_1MiB(b *testing.B) { benchmarkShake(b, NewShake256(), 1024, 1024) }

func BenchmarkSha3_512_1MiB(b *testing.B) { benchmarkHash(b, New512(), 1024, 1024) }

func Example_sum() {
	buf := []byte("some data to hash")
	// A hash needs to be 64 bytes long to have 256-bit collision resistance.
	h := make([]byte, 64)
	// Compute a 64-byte hash of buf and put it in h.
	ShakeSum256(h, buf)
}

func Example_mac() {
	k := []byte("this is a secret key; you should generate a strong random key that's at least 32 bytes long")
	buf := []byte("and this is some data to authenticate")
	// A MAC with 32 bytes of output has 256-bit security strength -- if you use at least a 32-byte-long key.
	h := make([]byte, 32)
	d := NewShake256()
	// Write the key into the hash.
	d.Write(k)
	// Now write the data.
	d.Write(buf)
	// Read 32 bytes of output from the hash into h.
	d.Read(h)
}