Commit bfcb95d6 authored by Juan Batiz-Benet's avatar Juan Batiz-Benet
Browse files

crypto -> p2p/crypto

The crypto package moves into p2p. Nothing in it so far is ipfs
specific; everything is p2p-general.
parent 0c1fe86b
PB = $(wildcard *.proto)
GO = $(PB:.proto=.pb.go)
all: $(GO)
%.pb.go: %.proto
protoc --gogo_out=. --proto_path=../../../../../../:/usr/local/opt/protobuf/include:. $<
clean:
rm *.pb.go
// Code generated by protoc-gen-gogo.
// source: crypto.proto
// DO NOT EDIT!
/*
Package crypto_pb is a generated protocol buffer package.
It is generated from these files:
crypto.proto
It has these top-level messages:
PublicKey
PrivateKey
*/
package crypto_pb
import proto "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/gogoprotobuf/proto"
import math "math"
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = math.Inf
type KeyType int32
const (
KeyType_RSA KeyType = 0
)
var KeyType_name = map[int32]string{
0: "RSA",
}
var KeyType_value = map[string]int32{
"RSA": 0,
}
func (x KeyType) Enum() *KeyType {
p := new(KeyType)
*p = x
return p
}
func (x KeyType) String() string {
return proto.EnumName(KeyType_name, int32(x))
}
func (x *KeyType) UnmarshalJSON(data []byte) error {
value, err := proto.UnmarshalJSONEnum(KeyType_value, data, "KeyType")
if err != nil {
return err
}
*x = KeyType(value)
return nil
}
type PublicKey struct {
Type *KeyType `protobuf:"varint,1,req,enum=crypto.pb.KeyType" json:"Type,omitempty"`
Data []byte `protobuf:"bytes,2,req" json:"Data,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *PublicKey) Reset() { *m = PublicKey{} }
func (m *PublicKey) String() string { return proto.CompactTextString(m) }
func (*PublicKey) ProtoMessage() {}
func (m *PublicKey) GetType() KeyType {
if m != nil && m.Type != nil {
return *m.Type
}
return KeyType_RSA
}
func (m *PublicKey) GetData() []byte {
if m != nil {
return m.Data
}
return nil
}
type PrivateKey struct {
Type *KeyType `protobuf:"varint,1,req,enum=crypto.pb.KeyType" json:"Type,omitempty"`
Data []byte `protobuf:"bytes,2,req" json:"Data,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *PrivateKey) Reset() { *m = PrivateKey{} }
func (m *PrivateKey) String() string { return proto.CompactTextString(m) }
func (*PrivateKey) ProtoMessage() {}
func (m *PrivateKey) GetType() KeyType {
if m != nil && m.Type != nil {
return *m.Type
}
return KeyType_RSA
}
func (m *PrivateKey) GetData() []byte {
if m != nil {
return m.Data
}
return nil
}
func init() {
proto.RegisterEnum("crypto.pb.KeyType", KeyType_name, KeyType_value)
}
package crypto.pb;
enum KeyType {
RSA = 0;
}
message PublicKey {
required KeyType Type = 1;
required bytes Data = 2;
}
message PrivateKey {
required KeyType Type = 1;
required bytes Data = 2;
}
// package crypto implements various cryptographic utilities used by ipfs.
// This includes a Public and Private key interface and an RSA key implementation
// that satisfies it.
package crypto
import (
"bytes"
"encoding/base64"
"errors"
"fmt"
"io"
"crypto/elliptic"
"crypto/hmac"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"hash"
proto "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/goprotobuf/proto"
pb "github.com/jbenet/go-ipfs/p2p/crypto/internal/pb"
u "github.com/jbenet/go-ipfs/util"
)
var log = u.Logger("crypto")
var ErrBadKeyType = errors.New("invalid or unsupported key type")
const (
RSA = iota
)
// Key represents a crypto key that can be compared to another key
type Key interface {
// Bytes returns a serialized, storeable representation of this key
Bytes() ([]byte, error)
// Hash returns the hash of this key
Hash() ([]byte, error)
// Equals checks whether two PubKeys are the same
Equals(Key) bool
}
// PrivKey represents a private key that can be used to generate a public key,
// sign data, and decrypt data that was encrypted with a public key
type PrivKey interface {
Key
// Cryptographically sign the given bytes
Sign([]byte) ([]byte, error)
// Return a public key paired with this private key
GetPublic() PubKey
// Generate a secret string of bytes
GenSecret() []byte
Decrypt(b []byte) ([]byte, error)
}
type PubKey interface {
Key
// Verify that 'sig' is the signed hash of 'data'
Verify(data []byte, sig []byte) (bool, error)
// Encrypt data in a way that can be decrypted by a paired private key
Encrypt(data []byte) ([]byte, error)
}
// Given a public key, generates the shared key.
type GenSharedKey func([]byte) ([]byte, error)
func GenerateKeyPair(typ, bits int) (PrivKey, PubKey, error) {
return GenerateKeyPairWithReader(typ, bits, rand.Reader)
}
// Generates a keypair of the given type and bitsize
func GenerateKeyPairWithReader(typ, bits int, src io.Reader) (PrivKey, PubKey, error) {
switch typ {
case RSA:
priv, err := rsa.GenerateKey(src, bits)
if err != nil {
return nil, nil, err
}
pk := &priv.PublicKey
return &RsaPrivateKey{sk: priv}, &RsaPublicKey{pk}, nil
default:
return nil, nil, ErrBadKeyType
}
}
// Generates an ephemeral public key and returns a function that will compute
// the shared secret key. Used in the identify module.
//
// Focuses only on ECDH now, but can be made more general in the future.
func GenerateEKeyPair(curveName string) ([]byte, GenSharedKey, error) {
var curve elliptic.Curve
switch curveName {
case "P-224":
curve = elliptic.P224()
case "P-256":
curve = elliptic.P256()
case "P-384":
curve = elliptic.P384()
case "P-521":
curve = elliptic.P521()
}
priv, x, y, err := elliptic.GenerateKey(curve, rand.Reader)
if err != nil {
return nil, nil, err
}
pubKey := elliptic.Marshal(curve, x, y)
// log.Debug("GenerateEKeyPair %d", len(pubKey))
done := func(theirPub []byte) ([]byte, error) {
// Verify and unpack node's public key.
x, y := elliptic.Unmarshal(curve, theirPub)
if x == nil {
return nil, fmt.Errorf("Malformed public key: %d %v", len(theirPub), theirPub)
}
if !curve.IsOnCurve(x, y) {
return nil, errors.New("Invalid public key.")
}
// Generate shared secret.
secret, _ := curve.ScalarMult(x, y, priv)
return secret.Bytes(), nil
}
return pubKey, done, nil
}
type StretchedKeys struct {
IV []byte
MacKey []byte
CipherKey []byte
}
// Generates a set of keys for each party by stretching the shared key.
// (myIV, theirIV, myCipherKey, theirCipherKey, myMACKey, theirMACKey)
func KeyStretcher(cipherType string, hashType string, secret []byte) (StretchedKeys, StretchedKeys) {
var cipherKeySize int
var ivSize int
switch cipherType {
case "AES-128":
ivSize = 16
cipherKeySize = 16
case "AES-256":
ivSize = 16
cipherKeySize = 32
case "Blowfish":
ivSize = 8
// Note: 24 arbitrarily selected, needs more thought
cipherKeySize = 32
}
hmacKeySize := 20
seed := []byte("key expansion")
result := make([]byte, 2*(ivSize+cipherKeySize+hmacKeySize))
var h func() hash.Hash
switch hashType {
case "SHA1":
h = sha1.New
case "SHA256":
h = sha256.New
case "SHA512":
h = sha512.New
default:
panic("Unrecognized hash function, programmer error?")
}
m := hmac.New(h, secret)
m.Write(seed)
a := m.Sum(nil)
j := 0
for j < len(result) {
m.Reset()
m.Write(a)
m.Write(seed)
b := m.Sum(nil)
todo := len(b)
if j+todo > len(result) {
todo = len(result) - j
}
copy(result[j:j+todo], b)
j += todo
m.Reset()
m.Write(a)
a = m.Sum(nil)
}
half := len(result) / 2
r1 := result[:half]
r2 := result[half:]
var k1 StretchedKeys
var k2 StretchedKeys
k1.IV = r1[0:ivSize]
k1.CipherKey = r1[ivSize : ivSize+cipherKeySize]
k1.MacKey = r1[ivSize+cipherKeySize:]
k2.IV = r2[0:ivSize]
k2.CipherKey = r2[ivSize : ivSize+cipherKeySize]
k2.MacKey = r2[ivSize+cipherKeySize:]
return k1, k2
}
// UnmarshalPublicKey converts a protobuf serialized public key into its
// representative object
func UnmarshalPublicKey(data []byte) (PubKey, error) {
pmes := new(pb.PublicKey)
err := proto.Unmarshal(data, pmes)
if err != nil {
return nil, err
}
switch pmes.GetType() {
case pb.KeyType_RSA:
return UnmarshalRsaPublicKey(pmes.GetData())
default:
return nil, ErrBadKeyType
}
}
// MarshalPublicKey converts a public key object into a protobuf serialized
// public key
func MarshalPublicKey(k PubKey) ([]byte, error) {
b, err := MarshalRsaPublicKey(k.(*RsaPublicKey))
if err != nil {
return nil, err
}
pmes := new(pb.PublicKey)
typ := pb.KeyType_RSA // for now only type.
pmes.Type = &typ
pmes.Data = b
return proto.Marshal(pmes)
}
// UnmarshalPrivateKey converts a protobuf serialized private key into its
// representative object
func UnmarshalPrivateKey(data []byte) (PrivKey, error) {
pmes := new(pb.PrivateKey)
err := proto.Unmarshal(data, pmes)
if err != nil {
return nil, err
}
switch pmes.GetType() {
case pb.KeyType_RSA:
return UnmarshalRsaPrivateKey(pmes.GetData())
default:
return nil, ErrBadKeyType
}
}
// MarshalPrivateKey converts a key object into its protobuf serialized form.
func MarshalPrivateKey(k PrivKey) ([]byte, error) {
b := MarshalRsaPrivateKey(k.(*RsaPrivateKey))
pmes := new(pb.PrivateKey)
typ := pb.KeyType_RSA // for now only type.
pmes.Type = &typ
pmes.Data = b
return proto.Marshal(pmes)
}
// ConfigDecodeKey decodes from b64 (for config file), and unmarshals.
func ConfigDecodeKey(b string) ([]byte, error) {
return base64.StdEncoding.DecodeString(b)
}
// ConfigEncodeKey encodes to b64 (for config file), and marshals.
func ConfigEncodeKey(b []byte) string {
return base64.StdEncoding.EncodeToString(b)
}
// KeyEqual checks whether two
func KeyEqual(k1, k2 Key) bool {
if k1 == k2 {
return true
}
b1, err1 := k1.Bytes()
b2, err2 := k2.Bytes()
return bytes.Equal(b1, b2) && err1 == err2
}
// KeyHash hashes a key.
func KeyHash(k Key) ([]byte, error) {
kb, err := k.Bytes()
if err != nil {
return nil, err
}
return u.Hash(kb), nil
}
package crypto_test
import (
. "github.com/jbenet/go-ipfs/p2p/crypto"
"bytes"
tu "github.com/jbenet/go-ipfs/util/testutil"
"testing"
)
func TestRsaKeys(t *testing.T) {
sk, pk, err := tu.RandKeyPair(512)
if err != nil {
t.Fatal(err)
}
testKeySignature(t, sk)
testKeyEncoding(t, sk)
testKeyEquals(t, sk)
testKeyEquals(t, pk)
}
func testKeySignature(t *testing.T, sk PrivKey) {
pk := sk.GetPublic()
text := sk.GenSecret()
sig, err := sk.Sign(text)
if err != nil {
t.Fatal(err)
}
valid, err := pk.Verify(text, sig)
if err != nil {
t.Fatal(err)
}
if !valid {
t.Fatal("Invalid signature.")
}
}
func testKeyEncoding(t *testing.T, sk PrivKey) {
skbm, err := MarshalPrivateKey(sk)
if err != nil {
t.Fatal(err)
}
sk2, err := UnmarshalPrivateKey(skbm)
if err != nil {
t.Fatal(err)
}
skbm2, err := MarshalPrivateKey(sk2)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(skbm, skbm2) {
t.Error("skb -> marshal -> unmarshal -> skb failed.\n", skbm, "\n", skbm2)
}
pk := sk.GetPublic()
pkbm, err := MarshalPublicKey(pk)
if err != nil {
t.Fatal(err)
}
_, err = UnmarshalPublicKey(pkbm)
if err != nil {
t.Fatal(err)
}
pkbm2, err := MarshalPublicKey(pk)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(pkbm, pkbm2) {
t.Error("skb -> marshal -> unmarshal -> skb failed.\n", pkbm, "\n", pkbm2)
}
}
func testKeyEquals(t *testing.T, k Key) {
kb, err := k.Bytes()
if err != nil {
t.Fatal(err)
}
if !KeyEqual(k, k) {
t.Fatal("Key not equal to itself.")
}
if !KeyEqual(k, testkey(kb)) {
t.Fatal("Key not equal to key with same bytes.")
}
sk, pk, err := tu.RandKeyPair(512)
if err != nil {
t.Fatal(err)
}
if KeyEqual(k, sk) {
t.Fatal("Keys should not equal.")
}
if KeyEqual(k, pk) {
t.Fatal("Keys should not equal.")
}
}
type testkey []byte
func (pk testkey) Bytes() ([]byte, error) {
return pk, nil
}
func (pk testkey) Equals(k Key) bool {
return KeyEqual(pk, k)
}
func (pk testkey) Hash() ([]byte, error) {
return KeyHash(pk)
}
package crypto
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/sha256"
"crypto/x509"
"errors"
proto "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/goprotobuf/proto"
pb "github.com/jbenet/go-ipfs/p2p/crypto/internal/pb"
)
type RsaPrivateKey struct {
sk *rsa.PrivateKey
pk *rsa.PublicKey
}
type RsaPublicKey struct {
k *rsa.PublicKey
}
func (pk *RsaPublicKey) Verify(data, sig []byte) (bool, error) {
hashed := sha256.Sum256(data)
err := rsa.VerifyPKCS1v15(pk.k, crypto.SHA256, hashed[:], sig)
if err != nil {
return false, err
}
return true, nil
}
func (pk *RsaPublicKey) Bytes() ([]byte, error) {
b, err := x509.MarshalPKIXPublicKey(pk.k)
if err != nil {
return nil, err
}
pbmes := new(pb.PublicKey)
typ := pb.KeyType_RSA
pbmes.Type = &typ
pbmes.Data = b
return proto.Marshal(pbmes)
}
func (pk *RsaPublicKey) Encrypt(b []byte) ([]byte, error) {
return rsa.EncryptPKCS1v15(rand.Reader, pk.k, b)
}
// Equals checks whether this key is equal to another
func (pk *RsaPublicKey) Equals(k Key) bool {
return KeyEqual(pk, k)
}
func (pk *RsaPublicKey) Hash() ([]byte, error) {
return KeyHash(pk)
}
func (sk *RsaPrivateKey) GenSecret() []byte {
buf := make([]byte, 16)
rand.Read(buf)
return buf
}
func (sk *RsaPrivateKey) Sign(message []byte) ([]byte, error) {
hashed := sha256.Sum256(message)
return rsa.SignPKCS1v15(rand.Reader, sk.sk, crypto.SHA256, hashed[:])
}
func (sk *RsaPrivateKey) GetPublic() PubKey {
if sk.pk == nil {
sk.pk = &sk.sk.PublicKey
}
return &RsaPublicKey{sk.pk}
}
func (sk *RsaPrivateKey) Decrypt(b []byte) ([]byte, error) {
return rsa.DecryptPKCS1v15(rand.Reader, sk.sk, b)
}
func (sk *RsaPrivateKey) Bytes() ([]byte, error) {
b := x509.MarshalPKCS1PrivateKey(sk.sk)
pbmes := new(pb.PrivateKey)
typ := pb.KeyType_RSA
pbmes.Type = &typ
pbmes.Data = b
return proto.Marshal(pbmes)
}
// Equals checks whether this key is equal to another
func (sk *RsaPrivateKey) Equals(k Key) bool {
return KeyEqual(sk, k)
}
func (sk *RsaPrivateKey) Hash() ([]byte, error) {
return KeyHash(sk)
}
func UnmarshalRsaPrivateKey(b []byte) (*RsaPrivateKey, error) {
sk, err := x509.ParsePKCS1PrivateKey(b)
if err != nil {
return nil, err
}
return &RsaPrivateKey{sk: sk}, nil
}
func MarshalRsaPrivateKey(k *RsaPrivateKey) []byte {
return x509.MarshalPKCS1PrivateKey(k.sk)
}
func UnmarshalRsaPublicKey(b []byte) (*RsaPublicKey, error) {
pub, err := x509.ParsePKIXPublicKey(b)
if err != nil {
return nil, err
}
pk, ok := pub.(*rsa.PublicKey)
if !ok {
return nil, errors.New("Not actually an rsa public key.")
}
return &RsaPublicKey{pk}, nil
}
func MarshalRsaPublicKey(k *RsaPublicKey) ([]byte, error) {
return x509.MarshalPKIXPublicKey(k.k)
}
package secio
import (
"errors"
"fmt"
"strings"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"hash"
bfish "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/go.crypto/blowfish"
ci "github.com/jbenet/go-ipfs/p2p/crypto"
)
// List of supported ECDH curves
var SupportedExchanges = "P-256,P-224,P-384,P-521"
// List of supported Ciphers
var SupportedCiphers = "AES-256,AES-128,Blowfish"
// List of supported Hashes
var SupportedHashes = "SHA256,SHA512"
type HMAC struct {
hash.Hash
size int
}
// encParams represent encryption parameters
type encParams struct {
// keys
permanentPubKey ci.PubKey
ephemeralPubKey []byte
keys ci.StretchedKeys
// selections
curveT string
cipherT string
hashT string
// cipher + mac
cipher cipher.Stream
mac HMAC
}
func (e *encParams) makeMacAndCipher() error {
m, err := newMac(e.hashT, e.keys.MacKey)
if err != nil {
return err
}
bc, err := newBlockCipher(e.cipherT, e.keys.CipherKey)
if err != nil {
return err
}
e.cipher = cipher.NewCTR(bc, e.keys.IV)
e.mac = m
return nil
}
func newMac(hashType string, key []byte) (HMAC, error) {
switch hashType {
case "SHA1":
return HMAC{hmac.New(sha1.New, key), sha1.Size}, nil
case "SHA512":
return HMAC{hmac.New(sha512.New, key), sha512.Size}, nil
case "SHA256":
return HMAC{hmac.New(sha256.New, key), sha256.Size}, nil
default:
return HMAC{}, fmt.Errorf("Unrecognized hash type: %s", hashType)
}
}
func newBlockCipher(cipherT string, key []byte) (cipher.Block, error) {
switch cipherT {
case "AES-128", "AES-256":
return aes.NewCipher(key)
case "Blowfish":
return bfish.NewCipher(key)
default:
return nil, fmt.Errorf("Unrecognized cipher type: %s", cipherT)
}
}
// Determines which algorithm to use. Note: f(a, b) = f(b, a)
func selectBest(order int, p1, p2 string) (string, error) {
var f, s []string
switch order {
case -1:
f = strings.Split(p2, ",")
s = strings.Split(p1, ",")
case 1:
f = strings.Split(p1, ",")
s = strings.Split(p2, ",")
default: // Exact same preferences.
p := strings.Split(p1, ",")
return p[0], nil
}
for _, fc := range f {
for _, sc := range s {
if fc == sc {
return fc, nil
}
}
}
return "", errors.New("No algorithms in common!")
}
// package secio handles establishing secure communication between two peers.
package secio
import (
"io"
ci "github.com/jbenet/go-ipfs/p2p/crypto"
context "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/go.net/context"
msgio "github.com/jbenet/go-ipfs/Godeps/_workspace/src/github.com/jbenet/go-msgio"
peer "github.com/jbenet/go-ipfs/p2p/peer"
)
// SessionGenerator constructs secure communication sessions for a peer.
type SessionGenerator struct {
LocalID peer.ID
PrivateKey ci.PrivKey
}
// NewSession takes an insecure io.ReadWriter, performs a TLS-like
// handshake with the other side, and returns a secure session.
// See the source for the protocol details and security implementation.
// The provided Context is only needed for the duration of this function.
func (sg *SessionGenerator) NewSession(ctx context.Context,
insecure io.ReadWriter) (Session, error) {
ss, err := newSecureSession(sg.LocalID, sg.PrivateKey)
if err != nil {
return nil, err
}
if ctx == nil {
ctx = context.Background()
}
ctx, cancel := context.WithCancel(ctx)
if err := ss.handshake(ctx, insecure); err != nil {
cancel()
return nil, err
}
return ss, nil
}
type Session interface {
// ReadWriter returns the encrypted communication channel
ReadWriter() msgio.ReadWriteCloser
// LocalPeer retrieves the local peer.
LocalPeer() peer.ID
// LocalPrivateKey retrieves the local private key
LocalPrivateKey() ci.PrivKey
// RemotePeer retrieves the remote peer.
RemotePeer() peer.ID
// RemotePublicKey retrieves the remote's public key
// which was received during the handshake.
RemotePublicKey() ci.PubKey
// Close closes the secure session
Close() error
}
// SecureReadWriter returns the encrypted communication channel
func (s *secureSession) ReadWriter() msgio.ReadWriteCloser {
return s.secure
}
// LocalPeer retrieves the local peer.
func (s *secureSession) LocalPeer() peer.ID {
return s.localPeer
}
// LocalPrivateKey retrieves the local peer's PrivateKey
func (s *secureSession) LocalPrivateKey() ci.PrivKey {
return s.localKey
}
// RemotePeer retrieves the remote peer.
func (s *secureSession) RemotePeer() peer.ID {
return s.remotePeer
}
// RemotePeer retrieves the remote peer.
func (s *secureSession) RemotePublicKey() ci.PubKey {
return s.remote.permanentPubKey
}
// Close closes the secure session
func (s *secureSession) Close() error {
return s.secure.Close()
}
PB = $(wildcard *.proto)
GO = $(PB:.proto=.pb.go)
all: $(GO)
%.pb.go: %.proto
protoc --gogo_out=. --proto_path=../../../../../../:/usr/local/opt/protobuf/include:. $<
clean:
rm *.pb.go
// Code generated by protoc-gen-gogo.
// source: spipe.proto
// DO NOT EDIT!
/*
Package spipe_pb is a generated protocol buffer package.
It is generated from these files:
spipe.proto
It has these top-level messages:
Propose
Exchange
*/
package spipe_pb
import proto "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/gogoprotobuf/proto"
import json "encoding/json"
import math "math"
// Reference proto, json, and math imports to suppress error if they are not otherwise used.
var _ = proto.Marshal
var _ = &json.SyntaxError{}
var _ = math.Inf
type Propose struct {
Rand []byte `protobuf:"bytes,1,opt,name=rand" json:"rand,omitempty"`
Pubkey []byte `protobuf:"bytes,2,opt,name=pubkey" json:"pubkey,omitempty"`
Exchanges *string `protobuf:"bytes,3,opt,name=exchanges" json:"exchanges,omitempty"`
Ciphers *string `protobuf:"bytes,4,opt,name=ciphers" json:"ciphers,omitempty"`
Hashes *string `protobuf:"bytes,5,opt,name=hashes" json:"hashes,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Propose) Reset() { *m = Propose{} }
func (m *Propose) String() string { return proto.CompactTextString(m) }
func (*Propose) ProtoMessage() {}
func (m *Propose) GetRand() []byte {
if m != nil {
return m.Rand
}
return nil
}
func (m *Propose) GetPubkey() []byte {
if m != nil {
return m.Pubkey
}
return nil
}
func (m *Propose) GetExchanges() string {
if m != nil && m.Exchanges != nil {
return *m.Exchanges
}
return ""
}
func (m *Propose) GetCiphers() string {
if m != nil && m.Ciphers != nil {
return *m.Ciphers
}
return ""
}
func (m *Propose) GetHashes() string {
if m != nil && m.Hashes != nil {
return *m.Hashes
}
return ""
}
type Exchange struct {
Epubkey []byte `protobuf:"bytes,1,opt,name=epubkey" json:"epubkey,omitempty"`
Signature []byte `protobuf:"bytes,2,opt,name=signature" json:"signature,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Exchange) Reset() { *m = Exchange{} }
func (m *Exchange) String() string { return proto.CompactTextString(m) }
func (*Exchange) ProtoMessage() {}
func (m *Exchange) GetEpubkey() []byte {
if m != nil {
return m.Epubkey
}
return nil
}
func (m *Exchange) GetSignature() []byte {
if m != nil {
return m.Signature
}
return nil
}
func init() {
}
package spipe.pb;
message Propose {
optional bytes rand = 1;
optional bytes pubkey = 2;
optional string exchanges = 3;
optional string ciphers = 4;
optional string hashes = 5;
}
message Exchange {
optional bytes epubkey = 1;
optional bytes signature = 2;
}
PB = $(wildcard *.proto)
GO = $(PB:.proto=.pb.go)
all: $(GO)
%.pb.go: %.proto
protoc --gogo_out=. --proto_path=../../../../../../:/usr/local/opt/protobuf/include:. $<
clean:
rm *.pb.go
// Code generated by protoc-gen-gogo.
// source: spipe.proto
// DO NOT EDIT!
/*
Package spipe_pb is a generated protocol buffer package.
It is generated from these files:
spipe.proto
It has these top-level messages:
Propose
Exchange
DataSig
*/
package spipe_pb
import proto "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/gogoprotobuf/proto"
import math "math"
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = math.Inf
type Propose struct {
Rand []byte `protobuf:"bytes,1,opt,name=rand" json:"rand,omitempty"`
Pubkey []byte `protobuf:"bytes,2,opt,name=pubkey" json:"pubkey,omitempty"`
Exchanges *string `protobuf:"bytes,3,opt,name=exchanges" json:"exchanges,omitempty"`
Ciphers *string `protobuf:"bytes,4,opt,name=ciphers" json:"ciphers,omitempty"`
Hashes *string `protobuf:"bytes,5,opt,name=hashes" json:"hashes,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Propose) Reset() { *m = Propose{} }
func (m *Propose) String() string { return proto.CompactTextString(m) }
func (*Propose) ProtoMessage() {}
func (m *Propose) GetRand() []byte {
if m != nil {
return m.Rand
}
return nil
}
func (m *Propose) GetPubkey() []byte {
if m != nil {
return m.Pubkey
}
return nil
}
func (m *Propose) GetExchanges() string {
if m != nil && m.Exchanges != nil {
return *m.Exchanges
}
return ""
}
func (m *Propose) GetCiphers() string {
if m != nil && m.Ciphers != nil {
return *m.Ciphers
}
return ""
}
func (m *Propose) GetHashes() string {
if m != nil && m.Hashes != nil {
return *m.Hashes
}
return ""
}
type Exchange struct {
Epubkey []byte `protobuf:"bytes,1,opt,name=epubkey" json:"epubkey,omitempty"`
Signature []byte `protobuf:"bytes,2,opt,name=signature" json:"signature,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Exchange) Reset() { *m = Exchange{} }
func (m *Exchange) String() string { return proto.CompactTextString(m) }
func (*Exchange) ProtoMessage() {}
func (m *Exchange) GetEpubkey() []byte {
if m != nil {
return m.Epubkey
}
return nil
}
func (m *Exchange) GetSignature() []byte {
if m != nil {
return m.Signature
}
return nil
}
type DataSig struct {
Data []byte `protobuf:"bytes,1,opt,name=data" json:"data,omitempty"`
Signature []byte `protobuf:"bytes,2,opt,name=signature" json:"signature,omitempty"`
Id *uint64 `protobuf:"varint,3,opt,name=id" json:"id,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (m *DataSig) Reset() { *m = DataSig{} }
func (m *DataSig) String() string { return proto.CompactTextString(m) }
func (*DataSig) ProtoMessage() {}
func (m *DataSig) GetData() []byte {
if m != nil {
return m.Data
}
return nil
}
func (m *DataSig) GetSignature() []byte {
if m != nil {
return m.Signature
}
return nil
}
func (m *DataSig) GetId() uint64 {
if m != nil && m.Id != nil {
return *m.Id
}
return 0
}
func init() {
}
package spipe.pb;
message Propose {
optional bytes rand = 1;
optional bytes pubkey = 2;
optional string exchanges = 3;
optional string ciphers = 4;
optional string hashes = 5;
}
message Exchange {
optional bytes epubkey = 1;
optional bytes signature = 2;
}
package secio
import (
"bytes"
"crypto/rand"
"errors"
"fmt"
"io"
context "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/go.net/context"
msgio "github.com/jbenet/go-ipfs/Godeps/_workspace/src/github.com/jbenet/go-msgio"
ci "github.com/jbenet/go-ipfs/p2p/crypto"
pb "github.com/jbenet/go-ipfs/p2p/crypto/secio/internal/pb"
peer "github.com/jbenet/go-ipfs/p2p/peer"
u "github.com/jbenet/go-ipfs/util"
eventlog "github.com/jbenet/go-ipfs/util/eventlog"
)
var log = eventlog.Logger("secio")
// ErrUnsupportedKeyType is returned when a private key cast/type switch fails.
var ErrUnsupportedKeyType = errors.New("unsupported key type")
// ErrClosed signals the closing of a connection.
var ErrClosed = errors.New("connection closed")
// nonceSize is the size of our nonces (in bytes)
const nonceSize = 16
// secureSession encapsulates all the parameters needed for encrypting
// and decrypting traffic from an insecure channel.
type secureSession struct {
secure msgio.ReadWriteCloser
insecure io.ReadWriter
insecureM msgio.ReadWriter
localKey ci.PrivKey
localPeer peer.ID
remotePeer peer.ID
local encParams
remote encParams
sharedSecret []byte
}
func newSecureSession(local peer.ID, key ci.PrivKey) (*secureSession, error) {
s := &secureSession{localPeer: local, localKey: key}
switch {
case s.localPeer == "":
return nil, errors.New("no local id provided")
case s.localKey == nil:
return nil, errors.New("no local private key provided")
case !s.localPeer.MatchesPrivateKey(s.localKey):
return nil, fmt.Errorf("peer.ID does not match PrivateKey")
}
return s, nil
}
// handsahke performs initial communication over insecure channel to share
// keys, IDs, and initiate communication, assigning all necessary params.
// requires the duplex channel to be a msgio.ReadWriter (for framed messaging)
func (s *secureSession) handshake(ctx context.Context, insecure io.ReadWriter) error {
s.insecure = insecure
s.insecureM = msgio.NewReadWriter(insecure)
// =============================================================================
// step 1. Propose -- propose cipher suite + send pubkeys + nonce
// Generate and send Hello packet.
// Hello = (rand, PublicKey, Supported)
nonceOut := make([]byte, nonceSize)
_, err := rand.Read(nonceOut)
if err != nil {
return err
}
log.Debugf("handshake: %s <--start--> %s", s.localPeer, s.remotePeer)
log.Event(ctx, "secureHandshakeStart", s.localPeer)
s.local.permanentPubKey = s.localKey.GetPublic()
myPubKeyBytes, err := s.local.permanentPubKey.Bytes()
if err != nil {
return err
}
proposeOut := new(pb.Propose)
proposeOut.Rand = nonceOut
proposeOut.Pubkey = myPubKeyBytes
proposeOut.Exchanges = &SupportedExchanges
proposeOut.Ciphers = &SupportedCiphers
proposeOut.Hashes = &SupportedHashes
// log.Debugf("1.0 Propose: nonce:%s exchanges:%s ciphers:%s hashes:%s",
// nonceOut, SupportedExchanges, SupportedCiphers, SupportedHashes)
// Send Propose packet (respects ctx)
proposeOutBytes, err := writeMsgCtx(ctx, s.insecureM, proposeOut)
if err != nil {
return err
}
// Receive + Parse their Propose packet and generate an Exchange packet.
proposeIn := new(pb.Propose)
proposeInBytes, err := readMsgCtx(ctx, s.insecureM, proposeIn)
if err != nil {
return err
}
// log.Debugf("1.0.1 Propose recv: nonce:%s exchanges:%s ciphers:%s hashes:%s",
// proposeIn.GetRand(), proposeIn.GetExchanges(), proposeIn.GetCiphers(), proposeIn.GetHashes())
// =============================================================================
// step 1.1 Identify -- get identity from their key
// get remote identity
s.remote.permanentPubKey, err = ci.UnmarshalPublicKey(proposeIn.GetPubkey())
if err != nil {
return err
}
// get peer id
s.remotePeer, err = peer.IDFromPublicKey(s.remote.permanentPubKey)
if err != nil {
return err
}
log.Debugf("1.1 Identify: %s Remote Peer Identified as %s", s.localPeer, s.remotePeer)
// =============================================================================
// step 1.2 Selection -- select/agree on best encryption parameters
// to determine order, use cmp(H(lr||rpk), H(rr||lpk)).
oh1 := u.Hash(append(proposeIn.GetPubkey(), nonceOut...))
oh2 := u.Hash(append(myPubKeyBytes, proposeIn.GetRand()...))
order := bytes.Compare(oh1, oh2)
s.local.curveT, err = selectBest(order, SupportedExchanges, proposeIn.GetExchanges())
if err != nil {
return err
}
s.local.cipherT, err = selectBest(order, SupportedCiphers, proposeIn.GetCiphers())
if err != nil {
return err
}
s.local.hashT, err = selectBest(order, SupportedHashes, proposeIn.GetHashes())
if err != nil {
return err
}
// we use the same params for both directions (must choose same curve)
// WARNING: if they dont SelectBest the same way, this won't work...
s.remote.curveT = s.local.curveT
s.remote.cipherT = s.local.cipherT
s.remote.hashT = s.local.hashT
// log.Debugf("1.2 selection: exchange:%s cipher:%s hash:%s",
// s.local.curveT, s.local.cipherT, s.local.hashT)
// =============================================================================
// step 2. Exchange -- exchange (signed) ephemeral keys. verify signatures.
// Generate EphemeralPubKey
var genSharedKey ci.GenSharedKey
s.local.ephemeralPubKey, genSharedKey, err = ci.GenerateEKeyPair(s.local.curveT)
// Gather corpus to sign.
var selectionOut bytes.Buffer
selectionOut.Write(proposeOutBytes)
selectionOut.Write(proposeInBytes)
selectionOut.Write(s.local.ephemeralPubKey)
selectionOutBytes := selectionOut.Bytes()
// log.Debugf("2.0 exchange: %v", selectionOutBytes)
exchangeOut := new(pb.Exchange)
exchangeOut.Epubkey = s.local.ephemeralPubKey
exchangeOut.Signature, err = s.localKey.Sign(selectionOutBytes)
if err != nil {
return err
}
// Send Propose packet (respects ctx)
if _, err := writeMsgCtx(ctx, s.insecureM, exchangeOut); err != nil {
return err
}
// Receive + Parse their Propose packet and generate an Exchange packet.
exchangeIn := new(pb.Exchange)
if _, err := readMsgCtx(ctx, s.insecureM, exchangeIn); err != nil {
return err
}
// =============================================================================
// step 2.1. Verify -- verify their exchange packet is good.
// get their ephemeral pub key
s.remote.ephemeralPubKey = exchangeIn.GetEpubkey()
var selectionIn bytes.Buffer
selectionIn.Write(proposeInBytes)
selectionIn.Write(proposeOutBytes)
selectionIn.Write(s.remote.ephemeralPubKey)
selectionInBytes := selectionIn.Bytes()
// log.Debugf("2.0.1 exchange recv: %v", selectionInBytes)
// u.POut("Remote Peer Identified as %s\n", s.remote)
sigOK, err := s.remote.permanentPubKey.Verify(selectionInBytes, exchangeIn.GetSignature())
if err != nil {
// log.Error("2.1 Verify: failed: %s", err)
return err
}
if !sigOK {
err := errors.New("Bad signature!")
// log.Error("2.1 Verify: failed: %s", err)
return err
}
// log.Debugf("2.1 Verify: signature verified.")
// =============================================================================
// step 2.2. Keys -- generate keys for mac + encryption
// OK! seems like we're good to go.
s.sharedSecret, err = genSharedKey(exchangeIn.GetEpubkey())
if err != nil {
return err
}
// generate two sets of keys (stretching)
k1, k2 := ci.KeyStretcher(s.local.cipherT, s.local.hashT, s.sharedSecret)
// use random nonces to decide order.
switch order {
case 1:
case -1:
k1, k2 = k2, k1 // swap
default:
log.Error("WOAH: same keys (AND same nonce: 1/(2^128) chance!).")
// this shouldn't happen. must determine order another way.
// use the same keys but, make sure to copy underlying data!
copy(k2.IV, k1.IV)
copy(k2.MacKey, k1.MacKey)
copy(k2.CipherKey, k1.CipherKey)
}
s.local.keys = k1
s.remote.keys = k2
// log.Debug("2.2 keys:\n\tshared: %v\n\tk1: %v\n\tk2: %v",
// s.sharedSecret, s.local.keys, s.remote.keys)
// =============================================================================
// step 2.3. MAC + Cipher -- prepare MAC + cipher
if err := s.local.makeMacAndCipher(); err != nil {
return err
}
if err := s.remote.makeMacAndCipher(); err != nil {
return err
}
// log.Debug("2.3 mac + cipher.")
// =============================================================================
// step 3. Finish -- send expected message (the nonces), verify encryption works
// setup ETM ReadWriter
w := NewETMWriter(s.insecure, s.local.cipher, s.local.mac)
r := NewETMReader(s.insecure, s.remote.cipher, s.remote.mac)
s.secure = msgio.Combine(w, r).(msgio.ReadWriteCloser)
// log.Debug("3.0 finish. sending: %v", proposeIn.GetRand())
// send their Nonce.
if _, err := s.secure.Write(proposeIn.GetRand()); err != nil {
return fmt.Errorf("Failed to write Finish nonce: %s", err)
}
// read our Nonce
nonceOut2 := make([]byte, len(nonceOut))
if _, err := io.ReadFull(s.secure, nonceOut2); err != nil {
return fmt.Errorf("Failed to read Finish nonce: %s", err)
}
// log.Debug("3.0 finish.\n\texpect: %v\n\tactual: %v", nonceOut, nonceOut2)
if !bytes.Equal(nonceOut, nonceOut2) {
return fmt.Errorf("Failed to read our encrypted nonce: %s != %s", nonceOut2, nonceOut)
}
// Whew! ok, that's all folks.
log.Debugf("handshake: %s <--finish--> %s", s.localPeer, s.remotePeer)
log.Event(ctx, "secureHandshakeFinish", s.localPeer, s.remotePeer)
return nil
}
package secio
import (
"crypto/cipher"
"errors"
"fmt"
"io"
"sync"
"crypto/hmac"
context "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/go.net/context"
proto "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/goprotobuf/proto"
msgio "github.com/jbenet/go-ipfs/Godeps/_workspace/src/github.com/jbenet/go-msgio"
mpool "github.com/jbenet/go-ipfs/Godeps/_workspace/src/github.com/jbenet/go-msgio/mpool"
)
// ErrMACInvalid signals that a MAC verification failed
var ErrMACInvalid = errors.New("MAC verification failed")
// bufPool is a ByteSlicePool for messages. we need buffers because (sadly)
// we cannot encrypt in place-- the user needs their buffer back.
var bufPool = mpool.ByteSlicePool
type etmWriter struct {
// params
pool mpool.Pool // for the buffers with encrypted data
msg msgio.WriteCloser // msgio for knowing where boundaries lie
str cipher.Stream // the stream cipher to encrypt with
mac HMAC // the mac to authenticate data with
sync.Mutex
}
// NewETMWriter Encrypt-Then-MAC
func NewETMWriter(w io.Writer, s cipher.Stream, mac HMAC) msgio.WriteCloser {
return &etmWriter{msg: msgio.NewWriter(w), str: s, mac: mac, pool: bufPool}
}
// Write writes passed in buffer as a single message.
func (w *etmWriter) Write(b []byte) (int, error) {
if err := w.WriteMsg(b); err != nil {
return 0, err
}
return len(b), nil
}
// WriteMsg writes the msg in the passed in buffer.
func (w *etmWriter) WriteMsg(b []byte) error {
w.Lock()
defer w.Unlock()
// encrypt.
data := w.pool.Get(uint32(len(b))).([]byte)
data = data[:len(b)] // the pool's buffer may be larger
w.str.XORKeyStream(data, b)
// log.Debugf("ENC plaintext (%d): %s %v", len(b), b, b)
// log.Debugf("ENC ciphertext (%d): %s %v", len(data), data, data)
// then, mac.
if _, err := w.mac.Write(data); err != nil {
return err
}
// Sum appends.
data = w.mac.Sum(data)
w.mac.Reset()
// it's sad to append here. our buffers are -- hopefully -- coming from
// a shared buffer pool, so the append may not actually cause allocation
// one can only hope. i guess we'll see.
return w.msg.WriteMsg(data)
}
func (w *etmWriter) Close() error {
return w.msg.Close()
}
type etmReader struct {
msgio.Reader
io.Closer
// buffer
buf []byte
// params
msg msgio.ReadCloser // msgio for knowing where boundaries lie
str cipher.Stream // the stream cipher to encrypt with
mac HMAC // the mac to authenticate data with
sync.Mutex
}
// NewETMReader Encrypt-Then-MAC
func NewETMReader(r io.Reader, s cipher.Stream, mac HMAC) msgio.ReadCloser {
return &etmReader{msg: msgio.NewReader(r), str: s, mac: mac}
}
func (r *etmReader) NextMsgLen() (int, error) {
return r.msg.NextMsgLen()
}
func (r *etmReader) drainBuf(buf []byte) int {
if r.buf == nil {
return 0
}
n := copy(buf, r.buf)
r.buf = r.buf[n:]
return n
}
func (r *etmReader) Read(buf []byte) (int, error) {
r.Lock()
defer r.Unlock()
// first, check if we have anything in the buffer
copied := r.drainBuf(buf)
buf = buf[copied:]
if copied > 0 {
return copied, nil
// return here to avoid complicating the rest...
// user can call io.ReadFull.
}
// check the buffer has enough space for the next msg
fullLen, err := r.msg.NextMsgLen()
if err != nil {
return 0, err
}
buf2 := buf
changed := false
// if not enough space, allocate a new buffer.
if cap(buf) < fullLen {
buf2 = make([]byte, fullLen)
changed = true
}
buf2 = buf2[:fullLen]
n, err := io.ReadFull(r.msg, buf2)
if err != nil {
return n, err
}
m, err := r.macCheckThenDecrypt(buf2)
if err != nil {
return 0, err
}
buf2 = buf2[:m]
if !changed {
return m, nil
}
n = copy(buf, buf2)
if len(buf2) > len(buf) {
r.buf = buf2[len(buf):] // had some left over? save it.
}
return n, nil
}
func (r *etmReader) ReadMsg() ([]byte, error) {
r.Lock()
defer r.Unlock()
msg, err := r.msg.ReadMsg()
if err != nil {
return nil, err
}
n, err := r.macCheckThenDecrypt(msg)
if err != nil {
return nil, err
}
return msg[:n], nil
}
func (r *etmReader) macCheckThenDecrypt(m []byte) (int, error) {
l := len(m)
if l < r.mac.size {
return 0, fmt.Errorf("buffer (%d) shorter than MAC size (%d)", l, r.mac.size)
}
mark := l - r.mac.size
data := m[:mark]
macd := m[mark:]
r.mac.Write(data)
expected := r.mac.Sum(nil)
r.mac.Reset()
// check mac. if failed, return error.
if !hmac.Equal(macd, expected) {
log.Error("MAC Invalid:", expected, "!=", macd)
return 0, ErrMACInvalid
}
// ok seems good. decrypt. (can decrypt in place, yay!)
// log.Debugf("DEC ciphertext (%d): %s %v", len(data), data, data)
r.str.XORKeyStream(data, data)
// log.Debugf("DEC plaintext (%d): %s %v", len(data), data, data)
return mark, nil
}
func (w *etmReader) Close() error {
return w.msg.Close()
}
// ReleaseMsg signals a buffer can be reused.
func (r *etmReader) ReleaseMsg(b []byte) {
r.msg.ReleaseMsg(b)
}
// writeMsgCtx is used by the
func writeMsgCtx(ctx context.Context, w msgio.Writer, msg proto.Message) ([]byte, error) {
enc, err := proto.Marshal(msg)
if err != nil {
return nil, err
}
// write in a goroutine so we can exit when our context is cancelled.
done := make(chan error)
go func(m []byte) {
err := w.WriteMsg(m)
done <- err
}(enc)
select {
case <-ctx.Done():
return nil, ctx.Err()
case e := <-done:
return enc, e
}
}
func readMsgCtx(ctx context.Context, r msgio.Reader, p proto.Message) ([]byte, error) {
var msg []byte
// read in a goroutine so we can exit when our context is cancelled.
done := make(chan error)
go func() {
var err error
msg, err = r.ReadMsg()
done <- err
}()
select {
case <-ctx.Done():
return nil, ctx.Err()
case e := <-done:
if e != nil {
return nil, e
}
}
return msg, proto.Unmarshal(msg, p)
}
......@@ -9,7 +9,7 @@ import (
ma "github.com/jbenet/go-ipfs/Godeps/_workspace/src/github.com/jbenet/go-multiaddr"
mh "github.com/jbenet/go-ipfs/Godeps/_workspace/src/github.com/jbenet/go-multihash"
ic "github.com/jbenet/go-ipfs/crypto"
ic "github.com/jbenet/go-ipfs/p2p/crypto"
u "github.com/jbenet/go-ipfs/util"
)
......
......@@ -6,8 +6,8 @@ import (
"strings"
"testing"
ic "github.com/jbenet/go-ipfs/crypto"
. "github.com/jbenet/go-ipfs/peer"
ic "github.com/jbenet/go-ipfs/p2p/crypto"
. "github.com/jbenet/go-ipfs/p2p/peer"
u "github.com/jbenet/go-ipfs/util"
tu "github.com/jbenet/go-ipfs/util/testutil"
......
......@@ -4,7 +4,7 @@ import (
"errors"
"sync"
ic "github.com/jbenet/go-ipfs/crypto"
ic "github.com/jbenet/go-ipfs/p2p/crypto"
ds "github.com/jbenet/go-ipfs/Godeps/_workspace/src/github.com/jbenet/go-datastore"
dssync "github.com/jbenet/go-ipfs/Godeps/_workspace/src/github.com/jbenet/go-datastore/sync"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment