fvp_common.c 10.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
#include <arch.h>
32
#include <arch_helpers.h>
33
34
#include <assert.h>
#include <bl_common.h>
35
#include <cci400.h>
36
#include <debug.h>
37
#include <mmio.h>
38
39
#include <platform.h>
#include <xlat_tables.h>
40
#include "../fvp_def.h"
41
42
43
44
45
46
47
48

/*******************************************************************************
 * This array holds the characteristics of the differences between the three
 * FVP platforms (Base, A53_A57 & Foundation). It will be populated during cold
 * boot at each boot stage by the primary before enabling the MMU (to allow cci
 * configuration) & used thereafter. Each BL will have its own copy to allow
 * independent operation.
 ******************************************************************************/
49
static unsigned long fvp_config[CONFIG_LIMIT];
50
51

/*******************************************************************************
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
 * Macro generating the code for the function enabling the MMU in the given
 * exception level, assuming that the pagetables have already been created.
 *
 *   _el:		Exception level at which the function will run
 *   _tcr_extra:	Extra bits to set in the TCR register. This mask will
 *			be OR'ed with the default TCR value.
 *   _tlbi_fct:		Function to invalidate the TLBs at the current
 *			exception level
 ******************************************************************************/
#define DEFINE_ENABLE_MMU_EL(_el, _tcr_extra, _tlbi_fct)		\
	void enable_mmu_el##_el(void)					\
	{								\
		uint64_t mair, tcr, ttbr;				\
		uint32_t sctlr;						\
									\
		assert(IS_IN_EL(_el));					\
		assert((read_sctlr_el##_el() & SCTLR_M_BIT) == 0);	\
									\
		/* Set attributes in the right indices of the MAIR */	\
		mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);	\
		mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR,		\
				ATTR_IWBWA_OWBWA_NTR_INDEX);		\
		write_mair_el##_el(mair);				\
									\
		/* Invalidate TLBs at the current exception level */	\
		_tlbi_fct();						\
									\
		/* Set TCR bits as well. */				\
		/* Inner & outer WBWA & shareable + T0SZ = 32 */	\
		tcr = TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WBA |	\
			TCR_RGN_INNER_WBA | TCR_T0SZ_4GB;		\
		tcr |= _tcr_extra;					\
		write_tcr_el##_el(tcr);					\
									\
		/* Set TTBR bits as well */				\
		ttbr = (uint64_t) l1_xlation_table;			\
		write_ttbr0_el##_el(ttbr);				\
									\
		/* Ensure all translation table writes have drained */	\
		/* into memory, the TLB invalidation is complete, */	\
		/* and translation register writes are committed */	\
		/* before enabling the MMU */				\
		dsb();							\
		isb();							\
									\
		sctlr = read_sctlr_el##_el();				\
		sctlr |= SCTLR_WXN_BIT | SCTLR_M_BIT | SCTLR_I_BIT;	\
		sctlr |= SCTLR_A_BIT | SCTLR_C_BIT;			\
		write_sctlr_el##_el(sctlr);				\
									\
		/* Ensure the MMU enable takes effect immediately */	\
		isb();							\
104
	}
105

106
107
108
/* Define EL1 and EL3 variants of the function enabling the MMU */
DEFINE_ENABLE_MMU_EL(1, 0, tlbivmalle1)
DEFINE_ENABLE_MMU_EL(3, TCR_EL3_RES1, tlbialle3)
109

110
111
/*
 * Table of regions to map using the MMU.
112
113
 * This doesn't include TZRAM as the 'mem_layout' argument passed to
 * configure_mmu_elx() will give the available subset of that,
114
 */
115
const mmap_region_t fvp_mmap[] = {
116
117
118
119
120
121
122
123
124
125
	{ TZROM_BASE,	TZROM_SIZE,	MT_MEMORY | MT_RO | MT_SECURE },
	{ TZDRAM_BASE,	TZDRAM_SIZE,	MT_MEMORY | MT_RW | MT_SECURE },
	{ FLASH0_BASE,	FLASH0_SIZE,	MT_MEMORY | MT_RO | MT_SECURE },
	{ FLASH1_BASE,	FLASH1_SIZE,	MT_MEMORY | MT_RO | MT_SECURE },
	{ VRAM_BASE,	VRAM_SIZE,	MT_MEMORY | MT_RW | MT_SECURE },
	{ DEVICE0_BASE,	DEVICE0_SIZE,	MT_DEVICE | MT_RW | MT_SECURE },
	{ NSRAM_BASE,	NSRAM_SIZE,	MT_MEMORY | MT_RW | MT_NS },
	{ DEVICE1_BASE,	DEVICE1_SIZE,	MT_DEVICE | MT_RW | MT_SECURE },
	/* 2nd GB as device for now...*/
	{ 0x40000000,	0x40000000,	MT_DEVICE | MT_RW | MT_SECURE },
126
	{ DRAM1_BASE,	DRAM1_SIZE,	MT_MEMORY | MT_RW | MT_NS },
127
128
129
	{0}
};

130
/*******************************************************************************
131
132
133
134
 * Macro generating the code for the function setting up the pagetables as per
 * the platform memory map & initialize the mmu, for the given exception level
 ******************************************************************************/
#define DEFINE_CONFIGURE_MMU_EL(_el)					\
135
	void fvp_configure_mmu_el##_el(unsigned long total_base,		\
136
				   unsigned long total_size,		\
137
138
139
140
141
				   unsigned long ro_start,		\
				   unsigned long ro_limit,		\
				   unsigned long coh_start,		\
				   unsigned long coh_limit)		\
	{								\
142
143
		mmap_add_region(total_base,				\
				total_size,				\
144
145
146
147
148
149
150
151
152
153
				MT_MEMORY | MT_RW | MT_SECURE);		\
		mmap_add_region(ro_start, ro_limit - ro_start,		\
				MT_MEMORY | MT_RO | MT_SECURE);		\
		mmap_add_region(coh_start, coh_limit - coh_start,	\
				MT_DEVICE | MT_RW | MT_SECURE);		\
		mmap_add(fvp_mmap);					\
		init_xlat_tables();					\
									\
		enable_mmu_el##_el();					\
	}
154

155
156
157
/* Define EL1 and EL3 variants of the function initialising the MMU */
DEFINE_CONFIGURE_MMU_EL(1)
DEFINE_CONFIGURE_MMU_EL(3)
158
159

/* Simple routine which returns a configuration variable value */
160
unsigned long fvp_get_cfgvar(unsigned int var_id)
161
162
{
	assert(var_id < CONFIG_LIMIT);
163
	return fvp_config[var_id];
164
165
166
167
168
169
170
171
172
}

/*******************************************************************************
 * A single boot loader stack is expected to work on both the Foundation FVP
 * models and the two flavours of the Base FVP models (AEMv8 & Cortex). The
 * SYS_ID register provides a mechanism for detecting the differences between
 * these platforms. This information is stored in a per-BL array to allow the
 * code to take the correct path.Per BL platform configuration.
 ******************************************************************************/
173
int fvp_config_setup(void)
174
175
176
177
178
179
180
181
182
{
	unsigned int rev, hbi, bld, arch, sys_id, midr_pn;

	sys_id = mmio_read_32(VE_SYSREGS_BASE + V2M_SYS_ID);
	rev = (sys_id >> SYS_ID_REV_SHIFT) & SYS_ID_REV_MASK;
	hbi = (sys_id >> SYS_ID_HBI_SHIFT) & SYS_ID_HBI_MASK;
	bld = (sys_id >> SYS_ID_BLD_SHIFT) & SYS_ID_BLD_MASK;
	arch = (sys_id >> SYS_ID_ARCH_SHIFT) & SYS_ID_ARCH_MASK;

183
184
	if ((rev != REV_FVP) || (arch != ARCH_MODEL))
		panic();
185
186
187
188
189
190
191

	/*
	 * The build field in the SYS_ID tells which variant of the GIC
	 * memory is implemented by the model.
	 */
	switch (bld) {
	case BLD_GIC_VE_MMAP:
192
193
194
195
		fvp_config[CONFIG_GICD_ADDR] = VE_GICD_BASE;
		fvp_config[CONFIG_GICC_ADDR] = VE_GICC_BASE;
		fvp_config[CONFIG_GICH_ADDR] = VE_GICH_BASE;
		fvp_config[CONFIG_GICV_ADDR] = VE_GICV_BASE;
196
197
		break;
	case BLD_GIC_A53A57_MMAP:
198
199
200
201
		fvp_config[CONFIG_GICD_ADDR] = BASE_GICD_BASE;
		fvp_config[CONFIG_GICC_ADDR] = BASE_GICC_BASE;
		fvp_config[CONFIG_GICH_ADDR] = BASE_GICH_BASE;
		fvp_config[CONFIG_GICV_ADDR] = BASE_GICV_BASE;
202
203
204
205
206
207
208
209
210
211
212
		break;
	default:
		assert(0);
	}

	/*
	 * The hbi field in the SYS_ID is 0x020 for the Base FVP & 0x010
	 * for the Foundation FVP.
	 */
	switch (hbi) {
	case HBI_FOUNDATION:
213
214
215
216
217
218
		fvp_config[CONFIG_MAX_AFF0] = 4;
		fvp_config[CONFIG_MAX_AFF1] = 1;
		fvp_config[CONFIG_CPU_SETUP] = 0;
		fvp_config[CONFIG_BASE_MMAP] = 0;
		fvp_config[CONFIG_HAS_CCI] = 0;
		fvp_config[CONFIG_HAS_TZC] = 0;
219
220
221
222
		break;
	case HBI_FVP_BASE:
		midr_pn = (read_midr() >> MIDR_PN_SHIFT) & MIDR_PN_MASK;
		if ((midr_pn == MIDR_PN_A57) || (midr_pn == MIDR_PN_A53))
223
			fvp_config[CONFIG_CPU_SETUP] = 1;
224
		else
225
			fvp_config[CONFIG_CPU_SETUP] = 0;
226

227
228
229
230
231
		fvp_config[CONFIG_MAX_AFF0] = 4;
		fvp_config[CONFIG_MAX_AFF1] = 2;
		fvp_config[CONFIG_BASE_MMAP] = 1;
		fvp_config[CONFIG_HAS_CCI] = 1;
		fvp_config[CONFIG_HAS_TZC] = 1;
232
233
234
235
236
237
238
239
		break;
	default:
		assert(0);
	}

	return 0;
}

Ian Spray's avatar
Ian Spray committed
240
241
unsigned long plat_get_ns_image_entrypoint(void)
{
242
243
	return NS_IMAGE_OFFSET;
}
244
245
246
247
248
249
250
251
252
253
254
255
256

uint64_t plat_get_syscnt_freq(void)
{
	uint64_t counter_base_frequency;

	/* Read the frequency from Frequency modes table */
	counter_base_frequency = mmio_read_32(SYS_CNTCTL_BASE + CNTFID_OFF);

	/* The first entry of the frequency modes table must not be 0 */
	assert(counter_base_frequency != 0);

	return counter_base_frequency;
}
257
258
259
260
261
262
263
264
265
266

void fvp_cci_setup(void)
{
	unsigned long cci_setup;

	/*
	 * Enable CCI-400 for this cluster. No need
	 * for locks as no other cpu is active at the
	 * moment
	 */
267
	cci_setup = fvp_get_cfgvar(CONFIG_HAS_CCI);
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
	if (cci_setup)
		cci_enable_coherency(read_mpidr());
}


/*******************************************************************************
 * Set SPSR and secure state for BL32 image
 ******************************************************************************/
void fvp_set_bl32_ep_info(entry_point_info_t *bl32_ep_info)
{
	SET_SECURITY_STATE(bl32_ep_info->h.attr, SECURE);
	/*
	 * The Secure Payload Dispatcher service is responsible for
	 * setting the SPSR prior to entry into the BL32 image.
	 */
	bl32_ep_info->spsr = 0;
}

/*******************************************************************************
 * Set SPSR and secure state for BL33 image
 ******************************************************************************/
void fvp_set_bl33_ep_info(entry_point_info_t *bl33_ep_info)
{
	unsigned long el_status;
	unsigned int mode;

	/* Figure out what mode we enter the non-secure world in */
	el_status = read_id_aa64pfr0_el1() >> ID_AA64PFR0_EL2_SHIFT;
	el_status &= ID_AA64PFR0_ELX_MASK;

	if (el_status)
		mode = MODE_EL2;
	else
		mode = MODE_EL1;

	/*
	 * TODO: Consider the possibility of specifying the SPSR in
	 * the FIP ToC and allowing the platform to have a say as
	 * well.
	 */
	bl33_ep_info->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	SET_SECURITY_STATE(bl33_ep_info->h.attr, NON_SECURE);
}