pm_svc_main.c 15.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
11
12
 */

/*
 * Top-level SMC handler for ZynqMP power management calls and
 * IPI setup functions for communication with PMU.
 */

#include <errno.h>
13
14
15
16
17
18
19
20
21
22

#include <common/runtime_svc.h>
#if ZYNQMP_WDT_RESTART
#include <arch_helpers.h>
#include <drivers/arm/gicv2.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <plat/common/platform.h>
#endif

23
#include <plat_private.h>
24
25
26
27
#include "pm_api_sys.h"
#include "pm_client.h"
#include "pm_ipi.h"

28
#define PM_GET_CALLBACK_DATA	0xa01
29
#define PM_SET_SUSPEND_MODE	0xa02
30
#define PM_GET_TRUSTZONE_VERSION	0xa03
31

32
33
/* !0 - UP, 0 - DOWN */
static int32_t pm_up = 0;
34

35
36
37
38
39
40
#if ZYNQMP_WDT_RESTART
static spinlock_t inc_lock;
static int active_cores = 0;
#endif


41
42
43
44
45
46
47
48
49
50
51
/**
 * pm_context - Structure which contains data for power management
 * @api_version		version of PM API, must match with one on PMU side
 * @payload		payload array used to store received
 *			data from ipi buffer registers
 */
static struct {
	uint32_t api_version;
	uint32_t payload[PAYLOAD_ARG_CNT];
} pm_ctx;

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#if ZYNQMP_WDT_RESTART
/**
 * trigger_wdt_restart() - Trigger warm restart event to APU cores
 *
 * This function triggers SGI for all active APU CPUs. SGI handler then
 * power down CPU and call system reset.
 */
static void trigger_wdt_restart(void)
{
	uint32_t core_count = 0;
	uint32_t core_status[3];
	uint32_t target_cpu_list = 0;
	int i;

	for (i = 0; i < 4; i++) {
		pm_get_node_status(NODE_APU_0 + i, core_status);
		if (core_status[0] == 1) {
			core_count++;
			target_cpu_list |= (1 << i);
		}
	}

	spin_lock(&inc_lock);
	active_cores = core_count;
	spin_unlock(&inc_lock);

	INFO("Active Cores: %d\n", active_cores);

80
81
82
83
84
85
	for (i = PLATFORM_CORE_COUNT - 1; i >= 0; i--) {
		if (target_cpu_list & (1 << i)) {
			/* trigger SGI to active cores */
			plat_ic_raise_el3_sgi(ARM_IRQ_SEC_SGI_7, i);
		}
	}
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
}

/**
 * ttc_fiq_handler() - TTC Handler for timer event
 * @id         number of the highest priority pending interrupt of the type
 *             that this handler was registered for
 * @flags      security state, bit[0]
 * @handler    pointer to 'cpu_context' structure of the current CPU for the
 *             security state specified in the 'flags' parameter
 * @cookie     unused
 *
 * Function registered as INTR_TYPE_EL3 interrupt handler
 *
 * When WDT event is received in PMU, PMU needs to notify master to do cleanup
 * if required. PMU sets up timer and starts timer to overflow in zero time upon
 * WDT event. ATF handles this timer event and takes necessary action required
 * for warm restart.
 *
 * In presence of non-secure software layers (EL1/2) sets the interrupt
 * at registered entrance in GIC and informs that PMU responsed or demands
 * action.
 */
static uint64_t ttc_fiq_handler(uint32_t id, uint32_t flags, void *handle,
                               void *cookie)
{
	INFO("BL31: Got TTC FIQ\n");

113
114
	plat_ic_end_of_interrupt(id);

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
	/* Clear TTC interrupt by reading interrupt register */
	mmio_read_32(TTC3_INTR_REGISTER_1);

	/* Disable the timer interrupts */
	mmio_write_32(TTC3_INTR_ENABLE_1, 0);

	trigger_wdt_restart();

	return 0;
}

/**
 * zynqmp_sgi7_irq() - Handler for SGI7 IRQ
 * @id         number of the highest priority pending interrupt of the type
 *             that this handler was registered for
 * @flags      security state, bit[0]
 * @handler    pointer to 'cpu_context' structure of the current CPU for the
 *             security state specified in the 'flags' parameter
 * @cookie     unused
 *
 * Function registered as INTR_TYPE_EL3 interrupt handler
 *
 * On receiving WDT event from PMU, ATF generates SGI7 to all running CPUs.
 * In response to SGI7 interrupt, each CPUs do clean up if required and last
 * running CPU calls system restart.
 */
static uint64_t __unused __dead2 zynqmp_sgi7_irq(uint32_t id, uint32_t flags,
                                                void *handle, void *cookie)
{
	int i;
	/* enter wfi and stay there */
	INFO("Entering wfi\n");

	spin_lock(&inc_lock);
	active_cores--;

	for (i = 0; i < 4; i++) {
		mmio_write_32(BASE_GICD_BASE + GICD_CPENDSGIR + 4 * i,
				0xffffffff);
	}

	spin_unlock(&inc_lock);

	if (active_cores == 0) {
		pm_system_shutdown(PMF_SHUTDOWN_TYPE_RESET,
				PMF_SHUTDOWN_SUBTYPE_SUBSYSTEM);
	}

	/* enter wfi and stay there */
	while (1)
		wfi();
}

/**
 * pm_wdt_restart_setup() - Setup warm restart interrupts
 *
 * This function sets up handler for SGI7 and TTC interrupts
 * used for warm restart.
 */
static int pm_wdt_restart_setup(void)
{
	int ret;

	/* register IRQ handler for SGI7 */
	ret = request_intr_type_el3(ARM_IRQ_SEC_SGI_7, zynqmp_sgi7_irq);
	if (ret) {
		WARN("BL31: registering SGI7 interrupt failed\n");
		goto err;
	}

	ret = request_intr_type_el3(IRQ_TTC3_1, ttc_fiq_handler);
	if (ret)
		WARN("BL31: registering TTC3 interrupt failed\n");

err:
	return ret;
}
#endif

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/**
 * pm_setup() - PM service setup
 *
 * @return	On success, the initialization function must return 0.
 *		Any other return value will cause the framework to ignore
 *		the service
 *
 * Initialization functions for ZynqMP power management for
 * communicaton with PMU.
 *
 * Called from sip_svc_setup initialization function with the
 * rt_svc_init signature.
 */
int pm_setup(void)
{
209
	int status, ret;
210

211
	status = pm_ipi_init(primary_proc);
212

213
214
215
216
217
218
#if ZYNQMP_WDT_RESTART
	status = pm_wdt_restart_setup();
	if (status)
		WARN("BL31: warm-restart setup failed\n");
#endif

219
	if (status >= 0) {
220
221
		INFO("BL31: PM Service Init Complete: API v%d.%d\n",
		     PM_VERSION_MAJOR, PM_VERSION_MINOR);
222
223
		ret = 0;
	} else {
224
		INFO("BL31: PM Service Init Failed, Error Code %d!\n", status);
225
226
		ret = status;
	}
227

228
	pm_up = !status;
229

230
	return ret;
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
}

/**
 * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
 * @smc_fid - Function Identifier
 * @x1 - x4 - Arguments
 * @cookie  - Unused
 * @handler - Pointer to caller's context structure
 *
 * @return  - Unused
 *
 * Determines that smc_fid is valid and supported PM SMC Function ID from the
 * list of pm_api_ids, otherwise completes the request with
 * the unknown SMC Function ID
 *
 * The SMC calls for PM service are forwarded from SIP Service SMC handler
 * function with rt_svc_handle signature
 */
uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
			uint64_t x4, void *cookie, void *handle, uint64_t flags)
{
	enum pm_ret_status ret;

	uint32_t pm_arg[4];

	/* Handle case where PM wasn't initialized properly */
257
	if (!pm_up)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
		SMC_RET1(handle, SMC_UNK);

	pm_arg[0] = (uint32_t)x1;
	pm_arg[1] = (uint32_t)(x1 >> 32);
	pm_arg[2] = (uint32_t)x2;
	pm_arg[3] = (uint32_t)(x2 >> 32);

	switch (smc_fid & FUNCID_NUM_MASK) {
	/* PM API Functions */
	case PM_SELF_SUSPEND:
		ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
				      pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_REQ_SUSPEND:
		ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
				     pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_REQ_WAKEUP:
278
279
280
281
282
283
284
	{
		/* Use address flag is encoded in the 1st bit of the low-word */
		unsigned int set_addr = pm_arg[1] & 0x1;
		uint64_t address = (uint64_t)pm_arg[2] << 32;

		address |= pm_arg[1] & (~0x1);
		ret = pm_req_wakeup(pm_arg[0], set_addr, address,
285
286
				    pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);
287
	}
288
289
290
291
292
293
294
295
296
297
298
299
300
301

	case PM_FORCE_POWERDOWN:
		ret = pm_force_powerdown(pm_arg[0], pm_arg[1]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_ABORT_SUSPEND:
		ret = pm_abort_suspend(pm_arg[0]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_SET_WAKEUP_SOURCE:
		ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_SYSTEM_SHUTDOWN:
302
		ret = pm_system_shutdown(pm_arg[0], pm_arg[1]);
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
		SMC_RET1(handle, (uint64_t)ret);

	case PM_REQ_NODE:
		ret = pm_req_node(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_RELEASE_NODE:
		ret = pm_release_node(pm_arg[0]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_SET_REQUIREMENT:
		ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2],
					 pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_SET_MAX_LATENCY:
		ret = pm_set_max_latency(pm_arg[0], pm_arg[1]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_GET_API_VERSION:
		/* Check is PM API version already verified */
324
		if (pm_ctx.api_version == PM_VERSION) {
325
326
			SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
				 ((uint64_t)PM_VERSION << 32));
327
		}
328
329

		ret = pm_get_api_version(&pm_ctx.api_version);
330
331
332
333
334
335
		/*
		 * Enable IPI IRQ
		 * assume the rich OS is OK to handle callback IRQs now.
		 * Even if we were wrong, it would not enable the IRQ in
		 * the GIC.
		 */
336
		pm_ipi_irq_enable(primary_proc);
337
338
339
340
341
342
343
		SMC_RET1(handle, (uint64_t)ret |
			 ((uint64_t)pm_ctx.api_version << 32));

	case PM_SET_CONFIGURATION:
		ret = pm_set_configuration(pm_arg[0]);
		SMC_RET1(handle, (uint64_t)ret);

344
345
346
347
	case PM_INIT_FINALIZE:
		ret = pm_init_finalize();
		SMC_RET1(handle, (uint64_t)ret);

348
	case PM_GET_NODE_STATUS:
349
350
351
352
353
354
355
	{
		uint32_t buff[3];

		ret = pm_get_node_status(pm_arg[0], buff);
		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buff[0] << 32),
			 (uint64_t)buff[1] | ((uint64_t)buff[2] << 32));
	}
356
357

	case PM_GET_OP_CHARACTERISTIC:
358
359
360
361
362
363
	{
		uint32_t result;

		ret = pm_get_op_characteristic(pm_arg[0], pm_arg[1], &result);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result << 32));
	}
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

	case PM_REGISTER_NOTIFIER:
		ret = pm_register_notifier(pm_arg[0], pm_arg[1], pm_arg[2],
					   pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_RESET_ASSERT:
		ret = pm_reset_assert(pm_arg[0], pm_arg[1]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_RESET_GET_STATUS:
	{
		uint32_t reset_status;

		ret = pm_reset_get_status(pm_arg[0], &reset_status);
		SMC_RET1(handle, (uint64_t)ret |
			 ((uint64_t)reset_status << 32));
	}

	/* PM memory access functions */
	case PM_MMIO_WRITE:
		ret = pm_mmio_write(pm_arg[0], pm_arg[1], pm_arg[2]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_MMIO_READ:
	{
		uint32_t value;

		ret = pm_mmio_read(pm_arg[0], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}
395
396
397
398
399
400
401
402
403
404
405
406
407

	case PM_FPGA_LOAD:
		ret = pm_fpga_load(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_FPGA_GET_STATUS:
	{
		uint32_t value;

		ret = pm_fpga_get_status(&value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

408
	case PM_GET_CHIPID:
409
410
411
412
413
414
415
	{
		uint32_t result[2];

		ret = pm_get_chipid(result);
		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32),
			 result[1]);
	}
416

417
418
419
420
421
	case PM_SECURE_RSA_AES:
		ret = pm_secure_rsaaes(pm_arg[0], pm_arg[1], pm_arg[2],
				       pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);

422
423
424
425
	case PM_GET_CALLBACK_DATA:
	{
		uint32_t result[4] = {0};

426
		pm_get_callbackdata(result, ARRAY_SIZE(result));
427
428
429
430
431
		SMC_RET2(handle,
			 (uint64_t)result[0] | ((uint64_t)result[1] << 32),
			 (uint64_t)result[2] | ((uint64_t)result[3] << 32));
	}

432
433
434
435
436
437
438
439
440
441
	case PM_PINCTRL_REQUEST:
		ret = pm_pinctrl_request(pm_arg[0]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_PINCTRL_RELEASE:
		ret = pm_pinctrl_release(pm_arg[0]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_PINCTRL_GET_FUNCTION:
	{
442
		uint32_t value = 0;
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

		ret = pm_pinctrl_get_function(pm_arg[0], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

	case PM_PINCTRL_SET_FUNCTION:
		ret = pm_pinctrl_set_function(pm_arg[0], pm_arg[1]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_PINCTRL_CONFIG_PARAM_GET:
	{
		uint32_t value;

		ret = pm_pinctrl_get_config(pm_arg[0], pm_arg[1], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

	case PM_PINCTRL_CONFIG_PARAM_SET:
		ret = pm_pinctrl_set_config(pm_arg[0], pm_arg[1], pm_arg[2]);
		SMC_RET1(handle, (uint64_t)ret);

464
465
466
467
468
469
470
471
472
	case PM_IOCTL:
	{
		uint32_t value;

		ret = pm_ioctl(pm_arg[0], pm_arg[1], pm_arg[2],
			       pm_arg[3], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

473
474
	case PM_QUERY_DATA:
	{
475
		uint32_t data[4] = { 0 };
476

477
478
		pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2],
			      pm_arg[3], data);
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
		SMC_RET2(handle, (uint64_t)data[0]  | ((uint64_t)data[1] << 32),
			 (uint64_t)data[2] | ((uint64_t)data[3] << 32));
	}

	case PM_CLOCK_ENABLE:
		ret = pm_clock_enable(pm_arg[0]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_CLOCK_DISABLE:
		ret = pm_clock_disable(pm_arg[0]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_CLOCK_GETSTATE:
	{
		uint32_t value;

		ret = pm_clock_getstate(pm_arg[0], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

	case PM_CLOCK_SETDIVIDER:
		ret = pm_clock_setdivider(pm_arg[0], pm_arg[1]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_CLOCK_GETDIVIDER:
	{
		uint32_t value;

		ret = pm_clock_getdivider(pm_arg[0], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

	case PM_CLOCK_SETRATE:
		ret = pm_clock_setrate(pm_arg[0],
		       ((uint64_t)pm_arg[2]) << 32 | pm_arg[1]);

		SMC_RET1(handle, (uint64_t)ret);

	case PM_CLOCK_GETRATE:
	{
		uint64_t value;

		ret = pm_clock_getrate(pm_arg[0], &value);
522
523
524
		SMC_RET2(handle, (uint64_t)ret |
				  (((uint64_t)value & 0xFFFFFFFFU) << 32U),
			 (value >> 32U) & 0xFFFFFFFFU);
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

	}

	case PM_CLOCK_SETPARENT:
		ret = pm_clock_setparent(pm_arg[0], pm_arg[1]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_CLOCK_GETPARENT:
	{
		uint32_t value;

		ret = pm_clock_getparent(pm_arg[0], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

540
541
542
543
	case PM_GET_TRUSTZONE_VERSION:
		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
			 ((uint64_t)ZYNQMP_TZ_VERSION << 32));

544
545
546
547
	case PM_SET_SUSPEND_MODE:
		ret = pm_set_suspend_mode(pm_arg[0]);
		SMC_RET1(handle, (uint64_t)ret);

548
549
550
551
552
553
554
555
556
557
	case PM_SECURE_SHA:
		ret = pm_sha_hash(pm_arg[0], pm_arg[1], pm_arg[2],
				pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);

	case PM_SECURE_RSA:
		ret = pm_rsa_core(pm_arg[0], pm_arg[1], pm_arg[2],
				       pm_arg[3]);
		SMC_RET1(handle, (uint64_t)ret);

558
559
560
561
562
563
564
565
566
567
	case PM_SECURE_IMAGE:
	{
		uint32_t result[2];

		ret = pm_secure_image(pm_arg[0], pm_arg[1], pm_arg[2],
				      pm_arg[3], &result[0]);
		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32),
			 result[1]);
	}

568
569
570
571
572
573
574
575
576
	case PM_FPGA_READ:
	{
		uint32_t value;

		ret = pm_fpga_read(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
				   &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

577
578
579
580
581
582
583
584
	case PM_SECURE_AES:
	{
		uint32_t value;

		ret = pm_aes_engine(pm_arg[0], pm_arg[1], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

585
586
587
588
	case PM_PLL_SET_PARAMETER:
		ret = pm_pll_set_parameter(pm_arg[0], pm_arg[1], pm_arg[2]);
		SMC_RET1(handle, (uint64_t)ret);

589
590
591
592
593
594
595
596
	case PM_PLL_GET_PARAMETER:
	{
		uint32_t value;

		ret = pm_pll_get_parameter(pm_arg[0], pm_arg[1], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value << 32));
	}

597
598
599
600
	case PM_PLL_SET_MODE:
		ret = pm_pll_set_mode(pm_arg[0], pm_arg[1]);
		SMC_RET1(handle, (uint64_t)ret);

601
602
603
604
605
606
607
608
	case PM_PLL_GET_MODE:
	{
		uint32_t mode;

		ret = pm_pll_get_mode(pm_arg[0], &mode);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)mode << 32));
	}

609
610
611
612
613
614
615
616
617
	case PM_REGISTER_ACCESS:
	{
		uint32_t value;

		ret = pm_register_access(pm_arg[0], pm_arg[1], pm_arg[2],
					 pm_arg[3], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

618
619
620
621
622
623
624
625
	case PM_EFUSE_ACCESS:
	{
		uint32_t value;

		ret = pm_efuse_access(pm_arg[0], pm_arg[1], &value);
		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
	}

626
627
628
629
630
	default:
		WARN("Unimplemented PM Service Call: 0x%x\n", smc_fid);
		SMC_RET1(handle, SMC_UNK);
	}
}