mce.c 14.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
11
12
13
14
15
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <denver.h>
#include <mce.h>
16
#include <mce_private.h>
17
18
19
20
21
#include <mmio.h>
#include <string.h>
#include <sys/errno.h>
#include <t18x_ari.h>
#include <tegra_def.h>
22
#include <tegra_platform.h>
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

/* NVG functions handlers */
static arch_mce_ops_t nvg_mce_ops = {
	.enter_cstate = nvg_enter_cstate,
	.update_cstate_info = nvg_update_cstate_info,
	.update_crossover_time = nvg_update_crossover_time,
	.read_cstate_stats = nvg_read_cstate_stats,
	.write_cstate_stats = nvg_write_cstate_stats,
	.call_enum_misc = ari_enumeration_misc,
	.is_ccx_allowed = nvg_is_ccx_allowed,
	.is_sc7_allowed = nvg_is_sc7_allowed,
	.online_core = nvg_online_core,
	.cc3_ctrl = nvg_cc3_ctrl,
	.update_reset_vector = ari_reset_vector_update,
	.roc_flush_cache = ari_roc_flush_cache,
	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
	.roc_clean_cache = ari_roc_clean_cache,
	.read_write_mca = ari_read_write_mca,
	.update_ccplex_gsc = ari_update_ccplex_gsc,
42
	.enter_ccplex_state = ari_enter_ccplex_state,
43
44
	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
	.misc_ccplex = ari_misc_ccplex
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
};

/* ARI functions handlers */
static arch_mce_ops_t ari_mce_ops = {
	.enter_cstate = ari_enter_cstate,
	.update_cstate_info = ari_update_cstate_info,
	.update_crossover_time = ari_update_crossover_time,
	.read_cstate_stats = ari_read_cstate_stats,
	.write_cstate_stats = ari_write_cstate_stats,
	.call_enum_misc = ari_enumeration_misc,
	.is_ccx_allowed = ari_is_ccx_allowed,
	.is_sc7_allowed = ari_is_sc7_allowed,
	.online_core = ari_online_core,
	.cc3_ctrl = ari_cc3_ctrl,
	.update_reset_vector = ari_reset_vector_update,
	.roc_flush_cache = ari_roc_flush_cache,
	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
	.roc_clean_cache = ari_roc_clean_cache,
	.read_write_mca = ari_read_write_mca,
	.update_ccplex_gsc = ari_update_ccplex_gsc,
65
	.enter_ccplex_state = ari_enter_ccplex_state,
66
67
	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
	.misc_ccplex = ari_misc_ccplex
68
69
};

70
typedef struct {
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
	uint32_t ari_base;
	arch_mce_ops_t *ops;
} mce_config_t;

/* Table to hold the per-CPU ARI base address and function handlers */
static mce_config_t mce_cfg_table[MCE_ARI_APERTURES_MAX] = {
	{
		/* A57 Core 0 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_0_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* A57 Core 1 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_1_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* A57 Core 2 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_2_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* A57 Core 3 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_3_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* D15 Core 0 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_4_OFFSET,
		.ops = &nvg_mce_ops,
	},
	{
		/* D15 Core 1 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_5_OFFSET,
		.ops = &nvg_mce_ops,
	}
};

static uint32_t mce_get_curr_cpu_ari_base(void)
{
111
112
113
	uint64_t mpidr = read_mpidr();
	uint64_t cpuid = mpidr & (uint64_t)MPIDR_CPU_MASK;
	uint64_t impl = (read_midr() >> (uint64_t)MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;
114
115
116
117
118
119
120
121

	/*
	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
	 * numbers start from 0. In order to get the proper arch_mce_ops_t
	 * struct, we have to convert the Denver CPU ids to the corresponding
	 * indices in the mce_ops_table array.
	 */
122
123
124
	if (impl == DENVER_IMPL) {
		cpuid |= 0x4U;
	}
125
126
127
128
129
130

	return mce_cfg_table[cpuid].ari_base;
}

static arch_mce_ops_t *mce_get_curr_cpu_ops(void)
{
131
132
133
134
	uint64_t mpidr = read_mpidr();
	uint64_t cpuid = mpidr & (uint64_t)MPIDR_CPU_MASK;
	uint64_t impl = (read_midr() >> (uint64_t)MIDR_IMPL_SHIFT) &
			(uint64_t)MIDR_IMPL_MASK;
135
136
137
138
139
140
141
142

	/*
	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
	 * numbers start from 0. In order to get the proper arch_mce_ops_t
	 * struct, we have to convert the Denver CPU ids to the corresponding
	 * indices in the mce_ops_table array.
	 */
143
144
145
	if (impl == DENVER_IMPL) {
		cpuid |= 0x4U;
	}
146
147
148
149
150
151
152

	return mce_cfg_table[cpuid].ops;
}

/*******************************************************************************
 * Common handler for all MCE commands
 ******************************************************************************/
153
int32_t mce_command_handler(uint64_t cmd, uint64_t arg0, uint64_t arg1,
154
155
			uint64_t arg2)
{
156
157
	const arch_mce_ops_t *ops;
	gp_regs_t *gp_regs = get_gpregs_ctx(cm_get_context(NON_SECURE));
158
159
	uint32_t cpu_ari_base;
	uint64_t ret64 = 0, arg3, arg4, arg5;
160
	int32_t ret = 0;
161

162
	assert(gp_regs != NULL);
163
164
165
166
167
168
169
170
171
172

	/* get a pointer to the CPU's arch_mce_ops_t struct */
	ops = mce_get_curr_cpu_ops();

	/* get the CPU's ARI base address */
	cpu_ari_base = mce_get_curr_cpu_ari_base();

	switch (cmd) {
	case MCE_CMD_ENTER_CSTATE:
		ret = ops->enter_cstate(cpu_ari_base, arg0, arg1);
173
		if (ret < 0) {
174
			ERROR("%s: enter_cstate failed(%d)\n", __func__, ret);
175
		}
176
177
178
179
180
181
182
183

		break;

	case MCE_CMD_UPDATE_CSTATE_INFO:
		/*
		 * get the parameters required for the update cstate info
		 * command
		 */
184
185
186
		arg3 = read_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X4));
		arg4 = read_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X5));
		arg5 = read_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X6));
187
188
189
190

		ret = ops->update_cstate_info(cpu_ari_base, (uint32_t)arg0,
				(uint32_t)arg1, (uint32_t)arg2, (uint8_t)arg3,
				(uint32_t)arg4, (uint8_t)arg5);
191
		if (ret < 0) {
192
193
			ERROR("%s: update_cstate_info failed(%d)\n",
				__func__, ret);
194
		}
195

196
197
198
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X4), (0));
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X5), (0));
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X6), (0));
199
200
201
202
203

		break;

	case MCE_CMD_UPDATE_CROSSOVER_TIME:
		ret = ops->update_crossover_time(cpu_ari_base, arg0, arg1);
204
		if (ret < 0) {
205
206
			ERROR("%s: update_crossover_time failed(%d)\n",
				__func__, ret);
207
		}
208
209
210
211
212
213
214

		break;

	case MCE_CMD_READ_CSTATE_STATS:
		ret64 = ops->read_cstate_stats(cpu_ari_base, arg0);

		/* update context to return cstate stats value */
215
216
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (ret64));
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X2), (ret64));
217
218
219
220
221

		break;

	case MCE_CMD_WRITE_CSTATE_STATS:
		ret = ops->write_cstate_stats(cpu_ari_base, arg0, arg1);
222
		if (ret < 0) {
223
224
			ERROR("%s: write_cstate_stats failed(%d)\n",
				__func__, ret);
225
		}
226
227
228
229
230
231
232
233
234
235
236

		break;

	case MCE_CMD_IS_CCX_ALLOWED:
		ret = ops->is_ccx_allowed(cpu_ari_base, arg0, arg1);
		if (ret < 0) {
			ERROR("%s: is_ccx_allowed failed(%d)\n", __func__, ret);
			break;
		}

		/* update context to return CCx status value */
237
238
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1),
			      (uint64_t)(ret));
239
240
241
242
243
244
245
246
247
248
249

		break;

	case MCE_CMD_IS_SC7_ALLOWED:
		ret = ops->is_sc7_allowed(cpu_ari_base, arg0, arg1);
		if (ret < 0) {
			ERROR("%s: is_sc7_allowed failed(%d)\n", __func__, ret);
			break;
		}

		/* update context to return SC7 status value */
250
251
252
253
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1),
			      (uint64_t)(ret));
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X3),
			      (uint64_t)(ret));
254
255
256
257
258

		break;

	case MCE_CMD_ONLINE_CORE:
		ret = ops->online_core(cpu_ari_base, arg0);
259
		if (ret < 0) {
260
			ERROR("%s: online_core failed(%d)\n", __func__, ret);
261
		}
262
263
264
265
266

		break;

	case MCE_CMD_CC3_CTRL:
		ret = ops->cc3_ctrl(cpu_ari_base, arg0, arg1, arg2);
267
		if (ret < 0) {
268
			ERROR("%s: cc3_ctrl failed(%d)\n", __func__, ret);
269
		}
270
271
272
273
274
275
276
277

		break;

	case MCE_CMD_ECHO_DATA:
		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_ECHO,
				arg0);

		/* update context to return if echo'd data matched source */
278
279
280
281
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1),
			      ((ret64 == arg0) ? 1ULL : 0ULL));
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X2),
			      ((ret64 == arg0) ? 1ULL : 0ULL));
282
283
284
285
286
287
288
289
290
291
292

		break;

	case MCE_CMD_READ_VERSIONS:
		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION,
			arg0);

		/*
		 * version = minor(63:32) | major(31:0). Update context
		 * to return major and minor version number.
		 */
293
294
295
296
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1),
			      (ret64));
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X2),
			      (ret64 >> 32ULL));
297
298
299
300

		break;

	case MCE_CMD_ENUM_FEATURES:
301
		ret64 = ops->call_enum_misc(cpu_ari_base,
302
303
304
				TEGRA_ARI_MISC_FEATURE_LEAF_0, arg0);

		/* update context to return features value */
305
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (ret64));
306
307
308
309
310

		break;

	case MCE_CMD_ROC_FLUSH_CACHE_TRBITS:
		ret = ops->roc_flush_cache_trbits(cpu_ari_base);
311
		if (ret < 0) {
312
313
			ERROR("%s: flush cache_trbits failed(%d)\n", __func__,
				ret);
314
		}
315
316
317
318
319

		break;

	case MCE_CMD_ROC_FLUSH_CACHE:
		ret = ops->roc_flush_cache(cpu_ari_base);
320
		if (ret < 0) {
321
			ERROR("%s: flush cache failed(%d)\n", __func__, ret);
322
		}
323
324
325
326
327

		break;

	case MCE_CMD_ROC_CLEAN_CACHE:
		ret = ops->roc_clean_cache(cpu_ari_base);
328
		if (ret < 0) {
329
			ERROR("%s: clean cache failed(%d)\n", __func__, ret);
330
		}
331
332
333
334

		break;

	case MCE_CMD_ENUM_READ_MCA:
335
		ret64 = ops->read_write_mca(cpu_ari_base, arg0, &arg1);
336
337

		/* update context to return MCA data/error */
338
339
340
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (ret64));
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X2), (arg1));
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X3), (ret64));
341
342
343
344

		break;

	case MCE_CMD_ENUM_WRITE_MCA:
345
		ret64 = ops->read_write_mca(cpu_ari_base, arg0, &arg1);
346
347

		/* update context to return MCA error */
348
349
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (ret64));
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X3), (ret64));
350
351
352

		break;

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#if ENABLE_CHIP_VERIFICATION_HARNESS
	case MCE_CMD_ENABLE_LATIC:
		/*
		 * This call is not for production use. The constant value,
		 * 0xFFFF0000, is specific to allowing for enabling LATIC on
		 * pre-production parts for the chip verification harness.
		 *
		 * Enabling LATIC allows S/W to read the MINI ISPs in the
		 * CCPLEX. The ISMs are used for various measurements relevant
		 * to particular locations in the Silicon. They are small
		 * counters which can be polled to determine how fast a
		 * particular location in the Silicon is.
		 */
		ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(),
			0xFFFF0000);

		break;
#endif
371
372

	case MCE_CMD_UNCORE_PERFMON_REQ:
373
		ret = ops->read_write_uncore_perfmon(cpu_ari_base, arg0, &arg1);
374
375

		/* update context to return data */
376
		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (arg1));
377
378
		break;

379
380
381
382
383
	case MCE_CMD_MISC_CCPLEX:
		ops->misc_ccplex(cpu_ari_base, arg0, arg1);

		break;

384
	default:
385
		ERROR("unknown MCE command (%llu)\n", cmd);
386
387
		ret = EINVAL;
		break;
388
389
390
391
392
393
394
395
	}

	return ret;
}

/*******************************************************************************
 * Handler to update the reset vector for CPUs
 ******************************************************************************/
396
int32_t mce_update_reset_vector(void)
397
{
398
	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
399

400
	ops->update_reset_vector(mce_get_curr_cpu_ari_base());
401
402
403
404

	return 0;
}

405
static int32_t mce_update_ccplex_gsc(tegra_ari_gsc_index_t gsc_idx)
406
{
407
	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
408
409
410
411
412
413
414
415
416

	ops->update_ccplex_gsc(mce_get_curr_cpu_ari_base(), gsc_idx);

	return 0;
}

/*******************************************************************************
 * Handler to update carveout values for Video Memory Carveout region
 ******************************************************************************/
417
int32_t mce_update_gsc_videomem(void)
418
419
420
421
422
423
424
{
	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_VPR_IDX);
}

/*******************************************************************************
 * Handler to update carveout values for TZDRAM aperture
 ******************************************************************************/
425
int32_t mce_update_gsc_tzdram(void)
426
427
428
429
430
431
432
{
	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_TZ_DRAM_IDX);
}

/*******************************************************************************
 * Handler to update carveout values for TZ SysRAM aperture
 ******************************************************************************/
433
int32_t mce_update_gsc_tzram(void)
434
435
436
437
438
439
440
441
442
{
	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_TZRAM);
}

/*******************************************************************************
 * Handler to shutdown/reset the entire system
 ******************************************************************************/
__dead2 void mce_enter_ccplex_state(uint32_t state_idx)
{
443
	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
444
445

	/* sanity check state value */
446
447
	if ((state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) &&
	    (state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT)) {
448
		panic();
449
	}
450
451
452
453

	ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(), state_idx);

	/* wait till the CCPLEX powers down */
454
	for (;;) {
455
		;
456
	}
457
458

}
459

460
461
462
/*******************************************************************************
 * Handler to issue the UPDATE_CSTATE_INFO request
 ******************************************************************************/
463
void mce_update_cstate_info(const mce_cstate_info_t *cstate)
464
{
465
	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
466
467
468
469
470
471
472

	/* issue the UPDATE_CSTATE_INFO request */
	ops->update_cstate_info(mce_get_curr_cpu_ari_base(), cstate->cluster,
		cstate->ccplex, cstate->system, cstate->system_state_force,
		cstate->wake_mask, cstate->update_wake_mask);
}

473
474
475
476
477
478
/*******************************************************************************
 * Handler to read the MCE firmware version and check if it is compatible
 * with interface header the BL3-1 was compiled against
 ******************************************************************************/
void mce_verify_firmware_version(void)
{
479
	const arch_mce_ops_t *ops;
480
481
	uint32_t cpu_ari_base;
	uint64_t version;
482
483
484
	uint32_t major, minor;

	/*
485
	 * MCE firmware is not supported on simulation platforms.
486
	 */
487
	if (tegra_platform_is_emulation()) {
488

489
		INFO("MCE firmware is not supported\n");
490

491
492
493
	} else {
		/* get a pointer to the CPU's arch_mce_ops_t struct */
		ops = mce_get_curr_cpu_ops();
494

495
496
		/* get the CPU's ARI base address */
		cpu_ari_base = mce_get_curr_cpu_ari_base();
497

498
499
500
501
502
503
504
		/*
		 * Read the MCE firmware version and extract the major and minor
		 * version fields
		 */
		version = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION, 0);
		major = (uint32_t)version;
		minor = (uint32_t)(version >> 32);
505

506
507
		INFO("MCE Version - HW=%d:%d, SW=%d:%d\n", major, minor,
			TEGRA_ARI_VERSION_MAJOR, TEGRA_ARI_VERSION_MINOR);
508

509
510
511
512
513
514
515
516
517
518
519
520
521
		/*
		 * Verify that the MCE firmware version and the interface header
		 * match
		 */
		if (major != TEGRA_ARI_VERSION_MAJOR) {
			ERROR("ARI major version mismatch\n");
			panic();
		}

		if (minor < TEGRA_ARI_VERSION_MINOR) {
			ERROR("ARI minor version mismatch\n");
			panic();
		}
522
523
	}
}