context_mgmt.c 18.7 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
2
 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Achin Gupta's avatar
Achin Gupta committed
5
6
 */

7
#include <amu.h>
8
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
9
#include <arch_helpers.h>
10
#include <assert.h>
Achin Gupta's avatar
Achin Gupta committed
11
#include <bl_common.h>
12
#include <context.h>
Achin Gupta's avatar
Achin Gupta committed
13
#include <context_mgmt.h>
14
#include <interrupt_mgmt.h>
15
#include <platform.h>
16
#include <platform_def.h>
17
#include <pubsub_events.h>
18
#include <smcc_helpers.h>
19
#include <spe.h>
20
#include <string.h>
21
#include <utils.h>
Achin Gupta's avatar
Achin Gupta committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
37
void cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
38
39
40
41
42
43
44
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

45
/*******************************************************************************
46
 * The following function initializes the cpu_context 'ctx' for
47
48
49
50
51
52
53
54
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
 * of the entry_point_info. The function returns a pointer to the initialized
 * context and sets this as the next context to return to.
 *
 * The EE and ST attributes are used to configure the endianess and secure
55
 * timer availability for the new execution context.
56
57
58
59
60
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
61
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
62
{
63
	unsigned int security_state;
64
	uint32_t scr_el3, pmcr_el0;
65
66
67
68
69
70
	el3_state_t *state;
	gp_regs_t *gp_regs;
	unsigned long sctlr_elx;

	assert(ctx);

71
72
	security_state = GET_SECURITY_STATE(ep->h.attr);

73
	/* Clear any residual register values from the context */
74
	zeromem(ctx, sizeof(*ctx));
75
76

	/*
77
78
79
80
81
82
83
	 * SCR_EL3 was initialised during reset sequence in macro
	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
	 * affect the next EL.
	 *
	 * The following fields are initially set to zero and then updated to
	 * the required value depending on the state of the SPSR_EL3 and the
	 * Security state and entrypoint attributes of the next EL.
84
85
86
87
	 */
	scr_el3 = read_scr();
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);
88
89
90
	/*
	 * SCR_NS: Set the security state of the next EL.
	 */
91
92
	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;
93
94
95
96
	/*
	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
	 *  Exception level as specified by SPSR.
	 */
97
98
	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;
99
100
101
102
103
	/*
	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
	 *  Secure timer registers to EL3, from AArch64 state only, if specified
	 *  by the entrypoint attributes.
	 */
104
105
106
	if (EP_GET_ST(ep->h.attr))
		scr_el3 |= SCR_ST_BIT;

107
#ifndef HANDLE_EA_EL3_FIRST
108
109
110
111
112
	/*
	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
	 *  to EL3 when executing at a lower EL. When executing at EL3, External
	 *  Aborts are taken to EL3.
	 */
113
114
115
	scr_el3 &= ~SCR_EA_BIT;
#endif

116
#ifdef IMAGE_BL31
117
	/*
118
119
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
	 *  indicated by the interrupt routing model for BL31.
120
	 */
121
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
122
#endif
123
124

	/*
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
	 * next mode is Hyp.
	 */
	if ((GET_RW(ep->spsr) == MODE_RW_64
	     && GET_EL(ep->spsr) == MODE_EL2)
	    || (GET_RW(ep->spsr) != MODE_RW_64
		&& GET_M32(ep->spsr) == MODE32_hyp)) {
		scr_el3 |= SCR_HCE_BIT;
	}

	/*
	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
	 * execution state setting all fields rather than relying of the hw.
	 * Some fields have architecturally UNKNOWN reset values and these are
	 * set to zero.
141
	 *
142
	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
143
	 *
144
145
	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
	 *  required by PSCI specification)
146
147
	 */
	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
148
149
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
150
151
	else {
		/*
152
153
154
155
156
157
158
159
160
161
162
		 * If the target execution state is AArch32 then the following
		 * fields need to be set.
		 *
		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
163
		 */
164
165
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
166
167
	}

168
169
	/*
	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
170
	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
171
172
	 * are not part of the stored cpu_context.
	 */
173
174
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
	if (security_state == SECURE) {
		/*
		 * Initialise PMCR_EL0 for secure context only, setting all
		 * fields rather than relying on hw. Some fields are
		 * architecturally UNKNOWN on reset.
		 *
		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
		 *
		 * PMCR_EL0.DP: Set to one so that the cycle counter,
		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
		 *
		 * PMCR_EL0.X: Set to zero to disable export of events.
		 *
		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
		 *  counts on every clock cycle.
		 */
		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
				| PMCR_EL0_DP_BIT)
				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
	}

199
200
201
202
203
204
205
206
207
208
209
210
211
212
	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

213
214
215
216
217
218
219
220
/*******************************************************************************
 * Enable architecture extensions on first entry to Non-secure world.
 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
 * it is zero.
 ******************************************************************************/
static void enable_extensions_nonsecure(int el2_unused)
{
#if IMAGE_BL31
221
222
223
#if ENABLE_SPE_FOR_LOWER_ELS
	spe_enable(el2_unused);
#endif
224
225
226
227

#if ENABLE_AMU
	amu_enable(el2_unused);
#endif
228
229
230
#endif
}

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

256
257
258
259
260
261
262
263
264
265
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
266
	uint32_t sctlr_elx, scr_el3, mdcr_el2;
267
	cpu_context_t *ctx = cm_get_context(security_state);
268
	int el2_unused = 0;
269
270
271
272
273
274
275
276
277

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
		if (scr_el3 & SCR_HCE_BIT) {
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
						 CTX_SCTLR_EL1);
Ken Kuang's avatar
Ken Kuang committed
278
			sctlr_elx &= SCTLR_EE_BIT;
279
280
			sctlr_elx |= SCTLR_EL2_RES1;
			write_sctlr_el2(sctlr_elx);
281
		} else if (EL_IMPLEMENTED(2)) {
282
283
			el2_unused = 1;

284
285
286
287
288
289
290
291
292
293
			/*
			 * EL2 present but unused, need to disable safely.
			 * SCTLR_EL2 can be ignored in this case.
			 *
			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
			 * to zero so that Non-secure operations do not trap to
			 * EL2.
			 *
			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
			 */
294
295
			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
			/*
			 * Initialise CPTR_EL2 setting all fields rather than
			 * relying on the hw. All fields have architecturally
			 * UNKNOWN reset values.
			 *
			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
			 *  accesses to the CPACR_EL1 or CPACR from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
			 *  register accesses to the trace registers from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
			 *  to SIMD and floating-point functionality from both
			 *  Execution states do not trap to EL2.
			 */
			write_cptr_el2(CPTR_EL2_RESET_VAL &
					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
					| CPTR_EL2_TFP_BIT));
316

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
			/*
			 * Initiliase CNTHCTL_EL2. All fields are
			 * architecturally UNKNOWN on reset and are set to zero
			 * except for field(s) listed below.
			 *
			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
			 *  physical timer registers.
			 *
			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
			 *  physical counter registers.
			 */
			write_cnthctl_el2(CNTHCTL_RESET_VAL |
						EL1PCEN_BIT | EL1PCTEN_BIT);
332

333
334
335
336
			/*
			 * Initialise CNTVOFF_EL2 to zero as it resets to an
			 * architecturally UNKNOWN value.
			 */
337
338
			write_cntvoff_el2(0);

339
340
341
342
			/*
			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
			 * MPIDR_EL1 respectively.
			 */
343
344
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
345
346

			/*
347
348
349
350
351
352
353
354
355
			 * Initialise VTTBR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
			 *  2 address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
356
			 */
357
358
359
360
			write_vttbr_el2(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));

361
			/*
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
			 * Initialise MDCR_EL2, setting all fields rather than
			 * relying on hw. Some fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
			 *  EL1 System register accesses to the Debug ROM
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
			 *  System register accesses to the powerdown debug
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDA: Set to zero so that System register
			 *  accesses to the debug registers do not trap to EL2.
			 *
			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
			 *  are not routed to EL2.
			 *
			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
			 *  Monitors.
			 *
			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
			 *  EL1 accesses to all Performance Monitors registers
			 *  are not trapped to EL2.
			 *
			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
			 *  trapped to EL2.
			 *
			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
			 *  architecturally-defined reset value.
393
			 */
394
			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
395
396
397
398
399
400
					((read_pmcr_el0() & PMCR_EL0_N_BITS)
					>> PMCR_EL0_N_SHIFT)) &
					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
					| MDCR_EL2_TPMCR_BIT));
401
402
403

			write_mdcr_el2(mdcr_el2);

404
			/*
405
406
407
408
409
410
			 * Initialise HSTR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * HSTR_EL2.T<n>: Set all these fields to zero so that
			 *  Non-secure EL0 or EL1 accesses to System registers
			 *  do not trap to EL2.
411
			 */
412
			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
413
			/*
414
415
416
417
418
			 * Initialise CNTHP_CTL_EL2. All fields are
			 * architecturally UNKNOWN on reset.
			 *
			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
			 *  physical timer and prevent timer interrupts.
419
			 */
420
421
			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
						~(CNTHP_CTL_ENABLE_BIT));
422
		}
423
		enable_extensions_nonsecure(el2_unused);
424
425
	}

426
427
	cm_el1_sysregs_context_restore(security_state);
	cm_set_next_eret_context(security_state);
428
429
}

Achin Gupta's avatar
Achin Gupta committed
430
/*******************************************************************************
431
432
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
433
434
435
436
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
437
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
438

439
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
440
441
442
	assert(ctx);

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
443
444
445
446
447
448
449

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_exited_secure_world);
	else
		PUBLISH_EVENT(cm_exited_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
450
451
452
453
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
454
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
455

456
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
457
458
459
	assert(ctx);

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
460
461
462
463
464
465
466

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_entering_secure_world);
	else
		PUBLISH_EVENT(cm_entering_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
467
468
469
}

/*******************************************************************************
470
471
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
472
 ******************************************************************************/
473
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
474
{
475
476
	cpu_context_t *ctx;
	el3_state_t *state;
477

478
	ctx = cm_get_context(security_state);
479
480
	assert(ctx);

481
	/* Populate EL3 state so that ERET jumps to the correct entry */
482
483
484
485
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

486
/*******************************************************************************
487
488
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
489
 ******************************************************************************/
490
void cm_set_elr_spsr_el3(uint32_t security_state,
491
			uintptr_t entrypoint, uint32_t spsr)
492
{
493
494
	cpu_context_t *ctx;
	el3_state_t *state;
495

496
	ctx = cm_get_context(security_state);
497
498
499
500
501
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
502
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
503
504
}

505
506
507
508
509
510
511
512
513
514
515
516
517
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

518
	ctx = cm_get_context(security_state);
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
	assert(ctx);

	/* Ensure that the bit position is a valid one */
	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);

	/* Ensure that the 'value' is only a bit wide */
	assert(value <= 1);

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1 << bit_pos);
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

547
	ctx = cm_get_context(security_state);
548
549
550
551
552
553
554
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	return read_ctx_reg(state, CTX_SCR_EL3);
}

555
556
557
558
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
559
560
561
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
562
	cpu_context_t *ctx;
563

564
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
565
566
	assert(ctx);

567
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
568
}