misc_helpers.S 13.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
 */

7
#include <arch.h>
8
#include <asm_macros.S>
9
#include <assert_macros.S>
10

11
12
13
14
15
	.globl	get_afflvl_shift
	.globl	mpidr_mask_lower_afflvls
	.globl	eret
	.globl	smc

16
17
	.globl	zero_normalmem
	.globl	zeromem
18
19
	.globl	zeromem16
	.globl	memcpy16
20

21
	.globl	disable_mmu_el1
22
	.globl	disable_mmu_el3
23
	.globl	disable_mmu_icache_el1
24
25
	.globl	disable_mmu_icache_el3

26
27
28
29
#if SUPPORT_VFP
	.globl	enable_vfp
#endif

30
func get_afflvl_shift
31
32
33
34
35
	cmp	x0, #3
	cinc	x0, x0, eq
	mov	x1, #MPIDR_AFFLVL_SHIFT
	lsl	x0, x0, x1
	ret
36
endfunc get_afflvl_shift
37

38
func mpidr_mask_lower_afflvls
39
40
41
42
43
44
45
	cmp	x1, #3
	cinc	x1, x1, eq
	mov	x2, #MPIDR_AFFLVL_SHIFT
	lsl	x2, x1, x2
	lsr	x0, x0, x2
	lsl	x0, x0, x2
	ret
46
endfunc mpidr_mask_lower_afflvls
47
48


49
func eret
50
	eret
51
endfunc eret
52
53


54
func smc
55
	smc	#0
56
endfunc smc
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/* -----------------------------------------------------------------------
 * void zero_normalmem(void *mem, unsigned int length);
 *
 * Initialise a region in normal memory to 0. This functions complies with the
 * AAPCS and can be called from C code.
 *
 * NOTE: MMU must be enabled when using this function as it can only operate on
 *       normal memory. It is intended to be mainly used from C code when MMU
 *       is usually enabled.
 * -----------------------------------------------------------------------
 */
.equ	zero_normalmem, zeromem_dczva

/* -----------------------------------------------------------------------
 * void zeromem(void *mem, unsigned int length);
 *
 * Initialise a region of device memory to 0. This functions complies with the
 * AAPCS and can be called from C code.
 *
 * NOTE: When data caches and MMU are enabled, zero_normalmem can usually be
 *       used instead for faster zeroing.
 *
 * -----------------------------------------------------------------------
 */
func zeromem
	/* x2 is the address past the last zeroed address */
	add	x2, x0, x1
	/*
	 * Uses the fallback path that does not use DC ZVA instruction and
	 * therefore does not need enabled MMU
	 */
	b	.Lzeromem_dczva_fallback_entry
endfunc zeromem

/* -----------------------------------------------------------------------
 * void zeromem_dczva(void *mem, unsigned int length);
 *
 * Fill a region of normal memory of size "length" in bytes with null bytes.
 * MMU must be enabled and the memory be of
 * normal type. This is because this function internally uses the DC ZVA
 * instruction, which generates an Alignment fault if used on any type of
 * Device memory (see section D3.4.9 of the ARMv8 ARM, issue k). When the MMU
 * is disabled, all memory behaves like Device-nGnRnE memory (see section
 * D4.2.8), hence the requirement on the MMU being enabled.
 * NOTE: The code assumes that the block size as defined in DCZID_EL0
 *       register is at least 16 bytes.
 *
 * -----------------------------------------------------------------------
 */
func zeromem_dczva

	/*
	 * The function consists of a series of loops that zero memory one byte
	 * at a time, 16 bytes at a time or using the DC ZVA instruction to
	 * zero aligned block of bytes, which is assumed to be more than 16.
	 * In the case where the DC ZVA instruction cannot be used or if the
	 * first 16 bytes loop would overflow, there is fallback path that does
	 * not use DC ZVA.
	 * Note: The fallback path is also used by the zeromem function that
	 *       branches to it directly.
	 *
	 *              +---------+   zeromem_dczva
	 *              |  entry  |
	 *              +----+----+
	 *                   |
	 *                   v
	 *              +---------+
	 *              | checks  |>o-------+ (If any check fails, fallback)
	 *              +----+----+         |
	 *                   |              |---------------+
	 *                   v              | Fallback path |
	 *            +------+------+       |---------------+
	 *            | 1 byte loop |       |
	 *            +------+------+ .Lzeromem_dczva_initial_1byte_aligned_end
	 *                   |              |
	 *                   v              |
	 *           +-------+-------+      |
	 *           | 16 bytes loop |      |
	 *           +-------+-------+      |
	 *                   |              |
	 *                   v              |
	 *            +------+------+ .Lzeromem_dczva_blocksize_aligned
	 *            | DC ZVA loop |       |
	 *            +------+------+       |
	 *       +--------+  |              |
	 *       |        |  |              |
	 *       |        v  v              |
	 *       |   +-------+-------+ .Lzeromem_dczva_final_16bytes_aligned
	 *       |   | 16 bytes loop |      |
	 *       |   +-------+-------+      |
	 *       |           |              |
	 *       |           v              |
	 *       |    +------+------+ .Lzeromem_dczva_final_1byte_aligned
	 *       |    | 1 byte loop |       |
	 *       |    +-------------+       |
	 *       |           |              |
	 *       |           v              |
	 *       |       +---+--+           |
	 *       |       | exit |           |
	 *       |       +------+           |
	 *       |			    |
	 *       |           +--------------+    +------------------+ zeromem
	 *       |           |  +----------------| zeromem function |
	 *       |           |  |                +------------------+
	 *       |           v  v
	 *       |    +-------------+ .Lzeromem_dczva_fallback_entry
	 *       |    | 1 byte loop |
	 *       |    +------+------+
	 *       |           |
	 *       +-----------+
	 */

	/*
	 * Readable names for registers
	 *
	 * Registers x0, x1 and x2 are also set by zeromem which
	 * branches into the fallback path directly, so cursor, length and
	 * stop_address should not be retargeted to other registers.
	 */
	cursor       .req x0 /* Start address and then current address */
	length       .req x1 /* Length in bytes of the region to zero out */
	/* Reusing x1 as length is never used after block_mask is set */
	block_mask   .req x1 /* Bitmask of the block size read in DCZID_EL0 */
	stop_address .req x2 /* Address past the last zeroed byte */
	block_size   .req x3 /* Size of a block in bytes as read in DCZID_EL0 */
	tmp1         .req x4
	tmp2         .req x5

186
#if ENABLE_ASSERTIONS
187
188
189
190
	/*
	 * Check for M bit (MMU enabled) of the current SCTLR_EL(1|3)
	 * register value and panic if the MMU is disabled.
	 */
191
#if defined(IMAGE_BL1) || defined(IMAGE_BL31) || (defined(IMAGE_BL2) && BL2_AT_EL3)
192
193
194
	mrs	tmp1, sctlr_el3
#else
	mrs	tmp1, sctlr_el1
195
#endif
196
197
198

	tst	tmp1, #SCTLR_M_BIT
	ASM_ASSERT(ne)
199
#endif /* ENABLE_ASSERTIONS */
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

	/* stop_address is the address past the last to zero */
	add	stop_address, cursor, length

	/*
	 * Get block_size = (log2(<block size>) >> 2) (see encoding of
	 * dczid_el0 reg)
	 */
	mrs	block_size, dczid_el0

	/*
	 * Select the 4 lowest bits and convert the extracted log2(<block size
	 * in words>) to <block size in bytes>
	 */
	ubfx	block_size, block_size, #0, #4
	mov	tmp2, #(1 << 2)
	lsl	block_size, tmp2, block_size

218
#if ENABLE_ASSERTIONS
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
	/*
	 * Assumes block size is at least 16 bytes to avoid manual realignment
	 * of the cursor at the end of the DCZVA loop.
	 */
	cmp	block_size, #16
	ASM_ASSERT(hs)
#endif
	/*
	 * Not worth doing all the setup for a region less than a block and
	 * protects against zeroing a whole block when the area to zero is
	 * smaller than that. Also, as it is assumed that the block size is at
	 * least 16 bytes, this also protects the initial aligning loops from
	 * trying to zero 16 bytes when length is less than 16.
	 */
	cmp	length, block_size
	b.lo	.Lzeromem_dczva_fallback_entry

	/*
	 * Calculate the bitmask of the block alignment. It will never
	 * underflow as the block size is between 4 bytes and 2kB.
	 * block_mask = block_size - 1
	 */
	sub	block_mask, block_size, #1

	/*
	 * length alias should not be used after this point unless it is
	 * defined as a register other than block_mask's.
	 */
	 .unreq length

	/*
	 * If the start address is already aligned to zero block size, go
	 * straight to the cache zeroing loop. This is safe because at this
	 * point, the length cannot be smaller than a block size.
	 */
	tst	cursor, block_mask
	b.eq	.Lzeromem_dczva_blocksize_aligned

	/*
	 * Calculate the first block-size-aligned address. It is assumed that
	 * the zero block size is at least 16 bytes. This address is the last
	 * address of this initial loop.
	 */
	orr	tmp1, cursor, block_mask
	add	tmp1, tmp1, #1

	/*
	 * If the addition overflows, skip the cache zeroing loops. This is
	 * quite unlikely however.
	 */
	cbz	tmp1, .Lzeromem_dczva_fallback_entry

	/*
	 * If the first block-size-aligned address is past the last address,
	 * fallback to the simpler code.
	 */
	cmp	tmp1, stop_address
	b.hi	.Lzeromem_dczva_fallback_entry

	/*
	 * If the start address is already aligned to 16 bytes, skip this loop.
	 * It is safe to do this because tmp1 (the stop address of the initial
	 * 16 bytes loop) will never be greater than the final stop address.
	 */
	tst	cursor, #0xf
	b.eq	.Lzeromem_dczva_initial_1byte_aligned_end

	/* Calculate the next address aligned to 16 bytes */
	orr	tmp2, cursor, #0xf
	add	tmp2, tmp2, #1
	/* If it overflows, fallback to the simple path (unlikely) */
	cbz	tmp2, .Lzeromem_dczva_fallback_entry
	/*
	 * Next aligned address cannot be after the stop address because the
	 * length cannot be smaller than 16 at this point.
	 */

	/* First loop: zero byte per byte */
1:
	strb	wzr, [cursor], #1
	cmp	cursor, tmp2
	b.ne	1b
.Lzeromem_dczva_initial_1byte_aligned_end:

	/*
	 * Second loop: we need to zero 16 bytes at a time from cursor to tmp1
	 * before being able to use the code that deals with block-size-aligned
	 * addresses.
	 */
	cmp	cursor, tmp1
	b.hs	2f
1:
	stp	xzr, xzr, [cursor], #16
	cmp	cursor, tmp1
	b.lo	1b
2:

	/*
	 * Third loop: zero a block at a time using DC ZVA cache block zeroing
	 * instruction.
	 */
.Lzeromem_dczva_blocksize_aligned:
	/*
	 * Calculate the last block-size-aligned address. If the result equals
	 * to the start address, the loop will exit immediately.
	 */
	bic	tmp1, stop_address, block_mask

	cmp	cursor, tmp1
	b.hs	2f
1:
	/* Zero the block containing the cursor */
	dc	zva, cursor
	/* Increment the cursor by the size of a block */
	add	cursor, cursor, block_size
	cmp	cursor, tmp1
	b.lo	1b
2:

	/*
	 * Fourth loop: zero 16 bytes at a time and then byte per byte the
	 * remaining area
	 */
.Lzeromem_dczva_final_16bytes_aligned:
	/*
	 * Calculate the last 16 bytes aligned address. It is assumed that the
	 * block size will never be smaller than 16 bytes so that the current
	 * cursor is aligned to at least 16 bytes boundary.
	 */
	bic	tmp1, stop_address, #15

	cmp	cursor, tmp1
	b.hs	2f
1:
	stp	xzr, xzr, [cursor], #16
	cmp	cursor, tmp1
	b.lo	1b
2:

	/* Fifth and final loop: zero byte per byte */
.Lzeromem_dczva_final_1byte_aligned:
	cmp	cursor, stop_address
	b.eq	2f
1:
	strb	wzr, [cursor], #1
	cmp	cursor, stop_address
	b.ne	1b
2:
367
	ret
368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
	/* Fallback for unaligned start addresses */
.Lzeromem_dczva_fallback_entry:
	/*
	 * If the start address is already aligned to 16 bytes, skip this loop.
	 */
	tst	cursor, #0xf
	b.eq	.Lzeromem_dczva_final_16bytes_aligned

	/* Calculate the next address aligned to 16 bytes */
	orr	tmp1, cursor, #15
	add	tmp1, tmp1, #1
	/* If it overflows, fallback to byte per byte zeroing */
	cbz	tmp1, .Lzeromem_dczva_final_1byte_aligned
	/* If the next aligned address is after the stop address, fall back */
	cmp	tmp1, stop_address
	b.hs	.Lzeromem_dczva_final_1byte_aligned

	/* Fallback entry loop: zero byte per byte */
1:
	strb	wzr, [cursor], #1
	cmp	cursor, tmp1
	b.ne	1b

	b	.Lzeromem_dczva_final_16bytes_aligned

	.unreq	cursor
	/*
	 * length is already unreq'ed to reuse the register for another
	 * variable.
	 */
	.unreq	stop_address
	.unreq	block_size
	.unreq	block_mask
	.unreq	tmp1
	.unreq	tmp2
endfunc zeromem_dczva
405
406
407
408
409
410
411
412
413

/* --------------------------------------------------------------------------
 * void memcpy16(void *dest, const void *src, unsigned int length)
 *
 * Copy length bytes from memory area src to memory area dest.
 * The memory areas should not overlap.
 * Destination and source addresses must be 16-byte aligned.
 * --------------------------------------------------------------------------
 */
414
func memcpy16
415
#if ENABLE_ASSERTIONS
416
417
418
419
	orr	x3, x0, x1
	tst	x3, #0xf
	ASM_ASSERT(eq)
#endif
420
421
422
/* copy 16 bytes at a time */
m_loop16:
	cmp	x2, #16
423
	b.lo	m_loop1
424
425
426
427
428
429
430
431
432
433
434
	ldp	x3, x4, [x1], #16
	stp	x3, x4, [x0], #16
	sub	x2, x2, #16
	b	m_loop16
/* copy byte per byte */
m_loop1:
	cbz	x2, m_end
	ldrb	w3, [x1], #1
	strb	w3, [x0], #1
	subs	x2, x2, #1
	b.ne	m_loop1
435
436
437
m_end:
	ret
endfunc memcpy16
438
439
440
441
442
443
444
445

/* ---------------------------------------------------------------------------
 * Disable the MMU at EL3
 * ---------------------------------------------------------------------------
 */

func disable_mmu_el3
	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT)
446
do_disable_mmu_el3:
447
448
449
	mrs	x0, sctlr_el3
	bic	x0, x0, x1
	msr	sctlr_el3, x0
450
	isb	/* ensure MMU is off */
451
452
	dsb	sy
	ret
453
endfunc disable_mmu_el3
454
455
456
457


func disable_mmu_icache_el3
	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
458
	b	do_disable_mmu_el3
459
endfunc disable_mmu_icache_el3
460

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/* ---------------------------------------------------------------------------
 * Disable the MMU at EL1
 * ---------------------------------------------------------------------------
 */

func disable_mmu_el1
	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT)
do_disable_mmu_el1:
	mrs	x0, sctlr_el1
	bic	x0, x0, x1
	msr	sctlr_el1, x0
	isb	/* ensure MMU is off */
	dsb	sy
	ret
endfunc disable_mmu_el1


func disable_mmu_icache_el1
	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
	b	do_disable_mmu_el1
endfunc disable_mmu_icache_el1

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/* ---------------------------------------------------------------------------
 * Enable the use of VFP at EL3
 * ---------------------------------------------------------------------------
 */
#if SUPPORT_VFP
func enable_vfp
	mrs	x0, cpacr_el1
	orr	x0, x0, #CPACR_VFP_BITS
	msr	cpacr_el1, x0
	mrs	x0, cptr_el3
	mov	x1, #AARCH64_CPTR_TFP
	bic	x0, x0, x1
	msr	cptr_el3, x0
	isb
	ret
498
endfunc enable_vfp
499
#endif