psci_afflvl_suspend.c 17.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>
34
#include <debug.h>
35
36
37
38
39
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>
40
#include <context_mgmt.h>
41
42
43
44
45
46
47

typedef int (*afflvl_suspend_handler)(unsigned long,
				      aff_map_node *,
				      unsigned long,
				      unsigned long,
				      unsigned int);

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/*******************************************************************************
 * This function sets the affinity level till which the current cpu is being
 * powered down to during a cpu_suspend call
 ******************************************************************************/
void psci_set_suspend_afflvl(aff_map_node *node, int afflvl)
{
	/*
	 * Check that nobody else is calling this function on our behalf &
	 * this information is being set only in the cpu node
	 */
	assert(node->mpidr == (read_mpidr() & MPIDR_AFFINITY_MASK));
	assert(node->level == MPIDR_AFFLVL0);

	/*
	 * Store the affinity level we are powering down to in our context.
	 * The cache flush in the suspend code will ensure that this info
	 * is available immediately upon resuming.
	 */
	psci_suspend_context[node->data].suspend_level = afflvl;
}

/*******************************************************************************
 * This function gets the affinity level till which the current cpu was powered
 * down during a cpu_suspend call.
 ******************************************************************************/
int psci_get_suspend_afflvl(aff_map_node *node)
{
	/* Return the target affinity level */
	return psci_suspend_context[node->data].suspend_level;
}

79
80
81
82
83
84
85
86
87
88
89
/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
static int psci_afflvl0_suspend(unsigned long mpidr,
				aff_map_node *cpu_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	unsigned int index, plat_state;
90
	unsigned long psci_entrypoint, sctlr;
91
	el3_state *saved_el3_state;
92
93
94
95
96
	int rc = PSCI_E_SUCCESS;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

97
98
99
100
101
102
103
104
105
106
	/*
	 * Generic management: Store the re-entry information for the non-secure
	 * world and allow the secure world to suspend itself
	 */

	/*
	 * Call the cpu suspend handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
107
108
	if (psci_spd_pm && psci_spd_pm->svc_suspend)
		psci_spd_pm->svc_suspend(power_state);
109

110
111
112
	/* State management: mark this cpu as suspended */
	psci_set_state(cpu_node, PSCI_STATE_SUSPEND);

113
114
115
116
117
118
119
120
121
122
	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
	index = cpu_node->data;
	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
123
124
	 * Arch. management: Save the EL3 state in the 'cpu_context'
	 * structure that has been allocated for this cpu, flush the
125
126
	 * L1 caches and exit intra-cluster coherency et al
	 */
127
128
	cm_el3_sysregs_context_save(NON_SECURE);
	rc = PSCI_E_SUCCESS;
129

130
131
132
133
134
135
136
	/*
	 * The EL3 state to PoC since it will be accessed after a
	 * reset with the caches turned off
	 */
	saved_el3_state = get_el3state_ctx(cm_get_context(mpidr, NON_SECURE));
	flush_dcache_range((uint64_t) saved_el3_state, sizeof(*saved_el3_state));

137
138
139
140
141
142
143
144
145
146
147
148
	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 *
	 * TODO: This power down sequence varies across cpus so it needs to be
	 * abstracted out on the basis of the MIDR like in cpu_reset_handler().
	 * Do the bare minimal for the time being. Fix this before porting to
	 * Cortex models.
	 */
149
	sctlr = read_sctlr_el3();
150
	sctlr &= ~SCTLR_C_BIT;
151
	write_sctlr_el3(sctlr);
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

	/*
	 * CAUTION: This flush to the level of unification makes an assumption
	 * about the cache hierarchy at affinity level 0 (cpu) in the platform.
	 * Ideally the platform should tell psci which levels to flush to exit
	 * coherency.
	 */
	dcsw_op_louis(DCCISW);

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {
168
		plat_state = psci_get_phys_state(cpu_node);
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

static int psci_afflvl1_suspend(unsigned long mpidr,
				aff_map_node *cluster_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

192
193
194
	/* State management: Decrement the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_SUSPEND);

195
196
197
198
	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
199
	plat_state = psci_get_phys_state(cluster_node);
200
201
202
203
204
205
206
207
208

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * cluster is to be shutdown
	 */
	if (plat_state == PSCI_STATE_OFF)
		dcsw_op_all(DCCISW);

	/*
209
	 * Plat. Management. Allow the platform to do its cluster
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


static int psci_afflvl2_suspend(unsigned long mpidr,
				aff_map_node *system_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

246
247
248
	/* State management: Decrement the system reference count */
	psci_set_state(system_node, PSCI_STATE_SUSPEND);

249
250
251
252
	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
253
	plat_state = psci_get_phys_state(system_node);
254
255

	/*
256
	 * Plat. Management : Allow the platform to do its bookeeping
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

static const afflvl_suspend_handler psci_afflvl_suspend_handlers[] = {
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the suspend handler for the corresponding affinity
 * levels
 ******************************************************************************/
static int psci_call_suspend_handlers(mpidr_aff_map_nodes mpidr_nodes,
				      int start_afflvl,
				      int end_afflvl,
				      unsigned long mpidr,
				      unsigned long entrypoint,
				      unsigned long context_id,
				      unsigned int power_state)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
	aff_map_node *node;

	for (level = start_afflvl; level <= end_afflvl; level++) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of restoring what we might have torn down at
		 * lower affinity levels.
		 */
		rc = psci_afflvl_suspend_handlers[level](mpidr,
							 node,
							 entrypoint,
							 context_id,
							 power_state);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Top level handler which is called when a cpu wants to suspend its execution.
 * It is assumed that along with turning the cpu off, higher affinity levels
 * until the target affinity level will be turned off as well. It traverses
 * through all the affinity levels performing generic, architectural, platform
 * setup and state management e.g. for a cluster that's to be suspended, it will
 * call the platform specific code which will disable coherency at the
 * interconnect level if the cpu is the last in the cluster. For a cpu it could
 * mean programming the power controller etc.
 *
 * The state of all the relevant affinity levels is changed prior to calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is about to enter.
 *
 * The affinity level specific handlers are called in ascending order i.e. from
 * the lowest to the highest affinity level implemented by the platform because
 * to turn off affinity level X it is neccesary to turn off affinity level X - 1
 * first.
 *
 * CAUTION: This function is called with coherent stacks so that coherency can
 * be turned off and caches can be flushed safely.
343
344
345
346
347
 ******************************************************************************/
int psci_afflvl_suspend(unsigned long mpidr,
			unsigned long entrypoint,
			unsigned long context_id,
			unsigned int power_state,
348
349
			int start_afflvl,
			int end_afflvl)
350
{
351
352
	int rc = PSCI_E_SUCCESS;
	mpidr_aff_map_nodes mpidr_nodes;
353
354
355
356

	mpidr &= MPIDR_AFFINITY_MASK;

	/*
357
358
359
360
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
361
	 */
362
363
364
365
366
367
	rc = psci_get_aff_map_nodes(mpidr,
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;
368
369

	/*
370
371
372
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
373
	 */
374
375
376
377
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
378

379

380
381
382
	/* Save the affinity level till which this cpu can be powered down */
	psci_set_suspend_afflvl(mpidr_nodes[MPIDR_AFFLVL0], end_afflvl);

383
384
385
386
387
388
389
390
	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_suspend_handlers(mpidr_nodes,
					start_afflvl,
					end_afflvl,
					mpidr,
					entrypoint,
					context_id,
					power_state);
391
392

	/*
393
394
	 * Release the locks corresponding to each affinity level in the
	 * reverse order to which they were acquired.
395
	 */
396
397
398
399
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
400
401
402
403
404
405
406
407
408

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
409
						aff_map_node *cpu_node)
410
{
411
	unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
412
	int32_t suspend_level;
413
414
415

	assert(cpu_node->level == MPIDR_AFFLVL0);

416
	/* Ensure we have been woken up from a suspended state */
417
	state = psci_get_state(cpu_node);
418
419
	assert(state == PSCI_STATE_SUSPEND);

420
421
422
423
424
425
426
427
	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
428
429

		/* Get the physical state of this cpu */
430
		plat_state = get_phys_state(state);
431
432
433
434
435
436
437
438
439
440
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	index = cpu_node->data;

	/*
441
442
	 * Arch. management: Restore the stashed EL3 architectural
	 * context from the 'cpu_context' structure for this cpu.
443
	 */
444
445
	cm_el3_sysregs_context_restore(NON_SECURE);
	rc = PSCI_E_SUCCESS;
446

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
	/*
	 * Use the more complex exception vectors to enable SPD
	 * initialisation. SP_EL3 should point to a 'cpu_context'
	 * structure which has an exception stack allocated. The
	 * non-secure context should have been set on this cpu
	 * prior to suspension.
	 */
	assert(cm_get_context(mpidr, NON_SECURE));
	cm_set_next_eret_context(NON_SECURE);
	write_vbar_el3((uint64_t) runtime_exceptions);

	/*
	 * Call the cpu suspend finish handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
463
	if (psci_spd_pm && psci_spd_pm->svc_suspend) {
464
		suspend_level = psci_get_suspend_afflvl(cpu_node);
465
		psci_spd_pm->svc_suspend_finish(suspend_level);
466
467
	}

468
469
470
	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
471
	 * call to set this cpu on its way.
472
	 */
473
	psci_get_ns_entry_info(index);
474

475
476
477
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

478
479
480
481
482
483
484
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

	return rc;
}

static unsigned int psci_afflvl1_suspend_finish(unsigned long mpidr,
485
						aff_map_node *cluster_node)
486
{
487
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
488
489
490
491
492
493
494
495
496
497
498
499

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
500
501

		/* Get the physical state of this cpu */
502
		plat_state = psci_get_phys_state(cluster_node);
503
504
505
506
507
508
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

509
510
511
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

512
513
514
515
516
	return rc;
}


static unsigned int psci_afflvl2_suspend_finish(unsigned long mpidr,
517
						aff_map_node *system_node)
518
{
519
	unsigned int plat_state, rc = PSCI_E_SUCCESS;;
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
538
539

		/* Get the physical state of the system */
540
		plat_state = psci_get_phys_state(system_node);
541
542
543
544
545
546
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

547
548
549
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

550
551
552
553
554
555
556
557
558
	return rc;
}

const afflvl_power_on_finisher psci_afflvl_suspend_finishers[] = {
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};