ari.c 14.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
 */

#include <arch.h>
#include <arch_helpers.h>
9
#include <assert.h>
10
#include <debug.h>
11
#include <delay_timer.h>
12
13
#include <denver.h>
#include <mmio.h>
14
#include <mce_private.h>
15
#include <platform.h>
16
17
18
19
20
21
#include <sys/errno.h>
#include <t18x_ari.h>

/*******************************************************************************
 * Register offsets for ARI request/results
 ******************************************************************************/
22
23
24
25
26
27
28
#define ARI_REQUEST			0x0U
#define ARI_REQUEST_EVENT_MASK		0x4U
#define ARI_STATUS			0x8U
#define ARI_REQUEST_DATA_LO		0xCU
#define ARI_REQUEST_DATA_HI		0x10U
#define ARI_RESPONSE_DATA_LO		0x14U
#define ARI_RESPONSE_DATA_HI		0x18U
29
30

/* Status values for the current request */
31
32
33
34
35
36
37
#define ARI_REQ_PENDING			1U
#define ARI_REQ_ONGOING			3U
#define ARI_REQUEST_VALID_BIT		(1U << 8)
#define ARI_EVT_MASK_STANDBYWFI_BIT	(1U << 7)

/* default timeout (ms) to wait for ARI completion */
#define ARI_MAX_RETRY_COUNT		2000
38
39
40
41
42
43

/*******************************************************************************
 * ARI helper functions
 ******************************************************************************/
static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
{
44
	return mmio_read_32((uint64_t)ari_base + (uint64_t)reg);
45
46
47
48
}

static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
{
49
	mmio_write_32((uint64_t)ari_base + (uint64_t)reg, val);
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
}

static inline uint32_t ari_get_request_low(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
}

static inline uint32_t ari_get_request_high(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
}

static inline uint32_t ari_get_response_low(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
}

static inline uint32_t ari_get_response_high(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
}

static inline void ari_clobber_response(uint32_t ari_base)
{
	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
}

78
static int32_t ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
79
80
		uint32_t lo, uint32_t hi)
{
81
82
	uint32_t retries = ARI_MAX_RETRY_COUNT;
	uint32_t status;
83
	int32_t ret = 0;
84
85
86
87
88
89
90
91
92
93
94
95

	/* program the request, event_mask, hi and lo registers */
	ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
	ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
	ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
	ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);

	/*
	 * For commands that have an event trigger, we should bypass
	 * ARI_STATUS polling, since MCE is waiting for SW to trigger
	 * the event.
	 */
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
	if (evt_mask != 0U) {
		ret = 0;
	} else {
		/* For shutdown/reboot commands, we dont have to check for timeouts */
		if ((req == (uint32_t)TEGRA_ARI_MISC_CCPLEX) &&
		    ((lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) ||
		     (lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) {
				ret = 0;
		} else {
			/*
			 * Wait for the command response for not more than the timeout
			 */
			while (retries != 0U) {

				/* read the command status */
				status = ari_read_32(ari_base, ARI_STATUS);
				if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U) {
					break;
				}

				/* delay 1 ms */
				mdelay(1);

				/* decrement the retry count */
				retries--;
			}

			/* assert if the command timed out */
			if (retries == 0U) {
				ERROR("ARI request timed out: req %d on CPU %d\n",
					req, plat_my_core_pos());
				assert(retries != 0U);
			}
		}
130
	}
131

132
	return ret;
133
134
}

135
int32_t ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
136
{
137
138
	int32_t ret = 0;

139
	/* check for allowed power state */
140
141
142
143
	if ((state != TEGRA_ARI_CORE_C0) &&
	    (state != TEGRA_ARI_CORE_C1) &&
	    (state != TEGRA_ARI_CORE_C6) &&
	    (state != TEGRA_ARI_CORE_C7)) {
144
		ERROR("%s: unknown cstate (%d)\n", __func__, state);
145
146
147
148
		ret = EINVAL;
	} else {
		/* clean the previous response state */
		ari_clobber_response(ari_base);
149

150
151
		/* Enter the cstate, to be woken up after wake_time (TSC ticks) */
		ret = ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
152
		TEGRA_ARI_ENTER_CSTATE, state, wake_time);
153
154
155
	}

	return ret;
156
157
}

158
int32_t ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
159
160
161
	uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
	uint8_t update_wake_mask)
{
162
	uint32_t val = 0U;
163

164
165
166
	/* clean the previous response state */
	ari_clobber_response(ari_base);

167
	/* update CLUSTER_CSTATE? */
168
169
170
171
	if (cluster != 0U) {
		val |= (cluster & (uint32_t)CLUSTER_CSTATE_MASK) |
			(uint32_t)CLUSTER_CSTATE_UPDATE_BIT;
	}
172
173

	/* update CCPLEX_CSTATE? */
174
175
176
177
	if (ccplex != 0U) {
		val |= ((ccplex & (uint32_t)CCPLEX_CSTATE_MASK) << (uint32_t)CCPLEX_CSTATE_SHIFT) |
			(uint32_t)CCPLEX_CSTATE_UPDATE_BIT;
	}
178
179

	/* update SYSTEM_CSTATE? */
180
181
182
183
184
	if (system != 0U) {
		val |= ((system & (uint32_t)SYSTEM_CSTATE_MASK) << (uint32_t)SYSTEM_CSTATE_SHIFT) |
		       (((uint32_t)sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
			(uint32_t)SYSTEM_CSTATE_UPDATE_BIT);
	}
185
186

	/* update wake mask value? */
187
188
189
	if (update_wake_mask != 0U) {
		val |= (uint32_t)CSTATE_WAKE_MASK_UPDATE_BIT;
	}
190
191

	/* set the updated cstate info */
192
	return ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CSTATE_INFO, val,
193
194
195
			wake_mask);
}

196
int32_t ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
197
{
198
199
	int32_t ret = 0;

200
201
	/* sanity check crossover type */
	if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
202
203
204
205
206
207
208
209
	    (type > TEGRA_ARI_CROSSOVER_CCP3_SC1)) {
		ret = EINVAL;
	} else {
		/* clean the previous response state */
		ari_clobber_response(ari_base);

		/* update crossover threshold time */
		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CROSSOVER,
210
			type, time);
211
212
213
	}

	return ret;
214
215
216
217
}

uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
{
218
219
	int32_t ret;
	uint64_t result;
220
221

	/* sanity check crossover type */
222
223
224
225
226
227
228
229
230
231
232
233
234
235
	if (state == 0U) {
		result = EINVAL;
	} else {
		/* clean the previous response state */
		ari_clobber_response(ari_base);

		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_CSTATE_STATS, state, 0U);
		if (ret != 0) {
			result = EINVAL;
		} else {
			result = (uint64_t)ari_get_response_low(ari_base);
		}
	}
	return result;
236
237
}

238
int32_t ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
239
{
240
241
242
	/* clean the previous response state */
	ari_clobber_response(ari_base);

243
	/* write the cstate stats */
244
	return ari_request_wait(ari_base, 0U, TEGRA_ARI_WRITE_CSTATE_STATS, state,
245
246
247
248
249
250
			stats);
}

uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
{
	uint64_t resp;
251
252
	int32_t ret;
	uint32_t local_data = data;
253
254
255
256
257

	/* clean the previous response state */
	ari_clobber_response(ari_base);

	/* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
258
259
260
	if (cmd != TEGRA_ARI_MISC_ECHO) {
		local_data = 0U;
	}
261

262
263
264
265
266
267
268
269
	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC, cmd, local_data);
	if (ret != 0) {
		resp = (uint64_t)ret;
	} else {
		/* get the command response */
		resp = ari_get_response_low(ari_base);
		resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);
	}
270
271
272
273

	return resp;
}

274
int32_t ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
275
{
276
277
	int32_t ret;
	uint32_t result;
278

279
280
281
	/* clean the previous response state */
	ari_clobber_response(ari_base);

282
	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7U,
283
			wake_time);
284
	if (ret != 0) {
285
		ERROR("%s: failed (%d)\n", __func__, ret);
286
287
288
		result = 0U;
	} else {
		result = ari_get_response_low(ari_base) & 0x1U;
289
290
291
	}

	/* 1 = CCx allowed, 0 = CCx not allowed */
292
	return (int32_t)result;
293
294
}

295
int32_t ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
296
{
297
	int32_t ret, result;
298
299

	/* check for allowed power state */
300
301
302
303
	if ((state != TEGRA_ARI_CORE_C0) &&
	    (state != TEGRA_ARI_CORE_C1) &&
	    (state != TEGRA_ARI_CORE_C6) &&
	    (state != TEGRA_ARI_CORE_C7)) {
304
		ERROR("%s: unknown cstate (%d)\n", __func__, state);
305
306
307
308
309
310
311
312
313
314
315
316
317
318
		result = EINVAL;
	} else {
		/* clean the previous response state */
		ari_clobber_response(ari_base);

		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_IS_SC7_ALLOWED, state,
				wake_time);
		if (ret != 0) {
			ERROR("%s: failed (%d)\n", __func__, ret);
			result = 0;
		} else {
			/* 1 = SC7 allowed, 0 = SC7 not allowed */
			result = (ari_get_response_low(ari_base) != 0U) ? 1 : 0;
		}
319
320
	}

321
	return result;
322
323
}

324
int32_t ari_online_core(uint32_t ari_base, uint32_t core)
325
{
326
327
328
329
330
	uint64_t cpu = read_mpidr() & (uint64_t)(MPIDR_CPU_MASK);
	uint64_t cluster = (read_mpidr() & (uint64_t)(MPIDR_CLUSTER_MASK)) >>
			   (uint64_t)(MPIDR_AFFINITY_BITS);
	uint64_t impl = (read_midr() >> (uint64_t)MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;
	int32_t ret;
331
332
333
334
335

	/* construct the current CPU # */
	cpu |= (cluster << 2);

	/* sanity check target core id */
336
	if ((core >= MCE_CORE_ID_MAX) || (cpu == (uint64_t)core)) {
337
		ERROR("%s: unsupported core id (%d)\n", __func__, core);
338
339
340
341
342
343
344
345
346
347
348
349
350
351
		ret = EINVAL;
	} else {
		/*
		 * The Denver cluster has 2 CPUs only - 0, 1.
		 */
		if ((impl == (uint32_t)DENVER_IMPL) &&
		    ((core == 2U) || (core == 3U))) {
			ERROR("%s: unknown core id (%d)\n", __func__, core);
			ret = EINVAL;
		} else {
			/* clean the previous response state */
			ari_clobber_response(ari_base);
			ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_ONLINE_CORE, core, 0U);
		}
352
353
	}

354
	return ret;
355
356
}

357
int32_t ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
358
{
359
	uint32_t val;
360

361
362
363
	/* clean the previous response state */
	ari_clobber_response(ari_base);

364
365
366
367
368
369
370
371
372
373
374
375
	/*
	 * If the enable bit is cleared, Auto-CC3 will be disabled by setting
	 * the SW visible voltage/frequency request registers for all non
	 * floorswept cores valid independent of StandbyWFI and disabling
	 * the IDLE voltage/frequency request register. If set, Auto-CC3
	 * will be enabled by setting the ARM SW visible voltage/frequency
	 * request registers for all non floorswept cores to be enabled by
	 * StandbyWFI or the equivalent signal, and always keeping the IDLE
	 * voltage/frequency request register enabled.
	 */
	val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
		((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
376
		((enable != 0U) ? MCE_AUTO_CC3_ENABLE_BIT : 0U));
377

378
	return ari_request_wait(ari_base, 0U, TEGRA_ARI_CC3_CTRL, val, 0U);
379
380
}

381
int32_t ari_reset_vector_update(uint32_t ari_base)
382
{
383
384
385
	/* clean the previous response state */
	ari_clobber_response(ari_base);

386
387
388
389
	/*
	 * Need to program the CPU reset vector one time during cold boot
	 * and SC7 exit
	 */
390
	(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_COPY_MISCREG_AA64_RST, 0U, 0U);
391
392
393
394

	return 0;
}

395
int32_t ari_roc_flush_cache_trbits(uint32_t ari_base)
396
{
397
398
399
	/* clean the previous response state */
	ari_clobber_response(ari_base);

400
401
	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS,
			0U, 0U);
402
403
}

404
int32_t ari_roc_flush_cache(uint32_t ari_base)
405
{
406
407
408
	/* clean the previous response state */
	ari_clobber_response(ari_base);

409
410
	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY,
			0U, 0U);
411
412
}

413
int32_t ari_roc_clean_cache(uint32_t ari_base)
414
{
415
416
417
	/* clean the previous response state */
	ari_clobber_response(ari_base);

418
419
	return ari_request_wait(ari_base, 0U, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY,
			0U, 0U);
420
421
}

422
uint64_t ari_read_write_mca(uint32_t ari_base, uint64_t cmd, uint64_t *data)
423
{
424
425
426
427
	uint64_t mca_arg_data, result = 0;
	uint32_t resp_lo, resp_hi;
	uint32_t mca_arg_err, mca_arg_finish;
	int32_t ret;
428
429

	/* Set data (write) */
430
	mca_arg_data = (data != NULL) ? *data : 0ULL;
431
432

	/* Set command */
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
	ari_write_32(ari_base, (uint32_t)cmd, ARI_RESPONSE_DATA_LO);
	ari_write_32(ari_base, (uint32_t)(cmd >> 32U), ARI_RESPONSE_DATA_HI);

	ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_MCA,
			       (uint32_t)mca_arg_data,
			       (uint32_t)(mca_arg_data >> 32UL));
	if (ret == 0) {
		resp_lo = ari_get_response_low(ari_base);
		resp_hi = ari_get_response_high(ari_base);

		mca_arg_err = resp_lo & MCA_ARG_ERROR_MASK;
		mca_arg_finish = (resp_hi >> MCA_ARG_FINISH_SHIFT) &
				 MCA_ARG_FINISH_MASK;

		if (mca_arg_finish == 0U) {
			result = (uint64_t)mca_arg_err;
		} else {
			if (data != NULL) {
				resp_lo = ari_get_request_low(ari_base);
				resp_hi = ari_get_request_high(ari_base);
				*data = ((uint64_t)resp_hi << 32UL) |
					 (uint64_t)resp_lo;
			}
456
457
458
		}
	}

459
	return result;
460
461
}

462
int32_t ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
463
{
464
	int32_t ret = 0;
465
	/* sanity check GSC ID */
466
467
468
469
470
471
472
473
474
475
476
477
478
	if (gsc_idx > (uint32_t)TEGRA_ARI_GSC_VPR_IDX) {
		ret = EINVAL;
	} else {
		/* clean the previous response state */
		ari_clobber_response(ari_base);

		/*
		 * The MCE code will read the GSC carveout value, corrseponding to
		 * the ID, from the MC registers and update the internal GSC registers
		 * of the CCPLEX.
		 */
		(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0U);
	}
479

480
	return ret;
481
482
483
484
}

void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
{
485
486
487
	/* clean the previous response state */
	ari_clobber_response(ari_base);

488
489
490
	/*
	 * The MCE will shutdown or restart the entire system
	 */
491
	(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, state_idx, 0U);
492
}
493

494
495
int32_t ari_read_write_uncore_perfmon(uint32_t ari_base, uint64_t req,
		uint64_t *data)
496
{
497
	int32_t ret, result;
498
	uint32_t val;
499
500
501
	uint8_t req_cmd, req_status;

	req_cmd = (uint8_t)(req >> UNCORE_PERFMON_CMD_SHIFT);
502

503
504
505
	/* clean the previous response state */
	ari_clobber_response(ari_base);

506
	/* sanity check input parameters */
507
	if ((req_cmd == UNCORE_PERFMON_CMD_READ) && (data == NULL)) {
508
		ERROR("invalid parameters\n");
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
		result = EINVAL;
	} else {
		/*
		 * For "write" commands get the value that has to be written
		 * to the uncore perfmon registers
		 */
		val = (req_cmd == UNCORE_PERFMON_CMD_WRITE) ?
			(uint32_t)*data : 0UL;

		ret = ari_request_wait(ari_base, 0U, TEGRA_ARI_PERFMON, val,
				       (uint32_t)req);
		if (ret != 0) {
			result = ret;
		} else {
			/* read the command status value */
			req_status = (uint8_t)ari_get_response_high(ari_base) &
					 UNCORE_PERFMON_RESP_STATUS_MASK;

			/*
			 * For "read" commands get the data from the uncore
			 * perfmon registers
			 */
			req_status >>= UNCORE_PERFMON_RESP_STATUS_SHIFT;
			if ((req_status == 0U) && (req_cmd == UNCORE_PERFMON_CMD_READ)) {
				*data = ari_get_response_low(ari_base);
			}
			result = (int32_t)req_status;
		}
537
538
	}

539
	return result;
540
}
541
542
543
544
545
546
547
548

void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
{
	/*
	 * This invokes the ARI_MISC_CCPLEX commands. This can be
	 * used to enable/disable coresight clock gating.
	 */

549
	if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) ||
550
		((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
551
		(value > 1U))) {
552
		ERROR("%s: invalid parameters \n", __func__);
553
554
555
556
	} else {
		/* clean the previous response state */
		ari_clobber_response(ari_base);
		(void)ari_request_wait(ari_base, 0U, TEGRA_ARI_MISC_CCPLEX, index, value);
557
558
	}
}