user-guide.md 45.5 KB
Newer Older
1
2
3
4
5
ARM Trusted Firmware User Guide
===============================

Contents :

6
7
8
9
10
11
12
1.  [Introduction](#1--introduction)
2.  [Host machine requirements](#2--host-machine-requirements)
3.  [Tools](#3--tools)
4.  [Building the Trusted Firmware](#4--building-the-trusted-firmware)
5.  [Obtaining the normal world software](#5--obtaining-the-normal-world-software)
6.  [Preparing the images to run on FVP](#6--preparing-the-images-to-run-on-fvp)
7.  [Running the software on FVP](#7--running-the-software-on-fvp)
13
8.  [Running the software on Juno](#8--running-the-software-on-juno)
14
15
16
17


1.  Introduction
----------------
18
This document describes how to build ARM Trusted Firmware and run it with a
19
20
21
22
tested set of other software components using defined configurations on the Juno
ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
possible to use other software components, configurations and platforms but that
is outside the scope of this document.
23

24
This document should be used in conjunction with the [Firmware Design].
25
26


27
28
2.  Host machine requirements
-----------------------------
29

30
The minimum recommended machine specification for building the software and
31
32
33
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
34

35
The software has been tested on Ubuntu 12.04.04 (64-bit).  Packages used
36
37
for building the software were installed from that distribution unless
otherwise specified.
38
39


40
41
3.  Tools
---------
42
43
44

The following tools are required to use the ARM Trusted Firmware:

45
*   `git` package to obtain source code.
46

47
*   `build-essential`, `uuid-dev` and `iasl` packages for building UEFI and the
48
    Firmware Image Package (FIP) tool.
49

50
51
52
53
*   `bc` and `ncurses-dev` packages for building Linux.

*   `device-tree-compiler` package for building the Flattened Device Tree (FDT)
    source files (`.dts` files) provided with this software.
54
55
56

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
57
    `gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz` tools are used.
58

59
60
        wget http://releases.linaro.org/14.07/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
61

62
63
64
*   `libssl-dev` package to build the certificate generation tool when support
    for Trusted Board Boot is needed.

65
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.20.
66
67


68
69
4.  Building the Trusted Firmware
---------------------------------
70

71
To build the Trusted Firmware images, follow these steps:
72

73
1.  Clone the ARM Trusted Firmware repository from GitHub:
74
75
76
77
78
79
80

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

81
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
82
    a valid platform, and then build:
83

84
85
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
86
        make PLAT=<platform> all fip
87

88
89
90
91
92
93
94
95
96
97
    If `PLAT` is not specified, `fvp` is assumed by default. See the "Summary of
    build options" for more information on available build options.

    The BL3-3 image corresponds to the software that is executed after switching
    to the non-secure world. UEFI can be used as the BL3-3 image. Refer to the
    "Obtaining the normal world software" section below.

    The TSP (Test Secure Payload), corresponding to the BL3-2 image, is not
    compiled in by default. Refer to the "Building the Test Secure Payload"
    section below.
98

99
    By default this produces a release version of the build. To produce a debug
100
    version instead, refer to the "Debugging options" section below.
101

102
103
104
105
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
106

107
108
109
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
110

111
    where `<platform>` is the name of the chosen platform and `<build-type>` is
112
113
114
    either `debug` or `release`. A Firmare Image Package (FIP) will be created
    as part of the build. It contains all boot loader images except for
    `bl1.bin`.
115

116
    *   `build/<platform>/<build-type>/fip.bin`
117

118
119
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
120

121
122
4.  (Optional) Some platforms may require a BL3-0 image to boot. This image can
    be included in the FIP when building the Trusted Firmware by specifying the
123
    `BL30` build option:
124
125
126
127
128
129

        BL30=<path-to>/<bl30_image>

5.  Output binary files `bl1.bin` and `fip.bin` are both required to boot the
    system. How these files are used is platform specific. Refer to the
    platform documentation on how to use the firmware images.
130

131
6.  (Optional) Build products for a specific build variant can be removed using:
132

133
        make DEBUG=<D> PLAT=<platform> clean
134
135
136
137
138
139

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
140

141
142
143
144
145
146
147
148
149
150
7.  (Optional) Path to binary for certain BL stages (BL2, BL3-1 and BL3-2) can be
    provided by specifying the BLx=<path-to>/<blx_image> where BLx is the BL stage.
    This will bypass the build of the BL component from source, but will include
    the specified binary in the final FIP image. Please note that BL3-2 will be
    included in the build, only if the `SPD` build option is specified.

    For example, specifying BL2=<path-to>/<bl2_image> in the build option, will
    skip compilation of BL2 source in trusted firmware, but include the BL2
    binary specified in the final FIP image.

151
152
153
154
155
156
157
158
159
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

160
161
#### Common build options

162
163
*   `BL30`: Path to BL3-0 image in the host file system. This image is optional.
    If a BL3-0 image is present then this option must be passed for the `fip`
164
    target.
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
*   `BL33`: Path to BL3-3 image in the host file system. This is mandatory for
    `fip` target in case the BL2 from ARM Trusted Firmware is used.

*   `BL2`: This is an optional build option which specifies the path to BL2
    image for the `fip` target. In this case, the BL2 in the ARM Trusted
    Firmware will not be built.

*   `BL31`:  This is an optional build option which specifies the path to
    BL3-1 image for the `fip` target. In this case, the BL3-1 in the ARM
    Trusted Firmware will not be built.

*   `BL32`:  This is an optional build option which specifies the path to
    BL3-2 image for the `fip` target. In this case, the BL3-2 in the ARM
    Trusted Firmware will not be built.
180

181
182
183
*   `FIP_NAME`: This is an optional build option which specifies the FIP
    filename for the `fip` target. Default is `fip.bin`.

184
185
*   `CROSS_COMPILE`: Prefix to toolchain binaries. Please refer to examples in
    this document for usage.
186
187

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
188
    (release) or 1 (debug) as values. 0 is the default.
189

190
191
192
193
194
195
196
197
198
199
200
201
202
*   `LOG_LEVEL`: Chooses the log level, which controls the amount of console log
    output compiled into the build. This should be one of the following:

        0  (LOG_LEVEL_NONE)
        10 (LOG_LEVEL_NOTICE)
        20 (LOG_LEVEL_ERROR)
        30 (LOG_LEVEL_WARNING)
        40 (LOG_LEVEL_INFO)
        50 (LOG_LEVEL_VERBOSE)

    All log output up to and including the log level is compiled into the build.
    The default value is 40 in debug builds and 20 in release builds.

203
204
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
205
206
    1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
    wants the timer registers to be saved and restored.
207

208
209
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
    platform name must be the name of one of the directories under the `plat/`
210
    directory other than `common`.
211
212
213

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
214
215
    the SPD source, relative to `services/spd/`; the directory is expected to
    contain a makefile called `<spd-value>.mk`.
216
217

*   `V`: Verbose build. If assigned anything other than 0, the build commands
218
    are printed. Default is 0.
219

220
221
*   `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM GIC
    driver for implementing the platform GIC API. This API is used
222
    by the interrupt management framework. Default is 2 (that is, version 2.0).
223

224
225
226
227
228
*   `IMF_READ_INTERRUPT_ID`: Boolean flag used by the interrupt management
    framework to enable passing of the interrupt id to its handler. The id is
    read using a platform GIC API. `INTR_ID_UNAVAILABLE` is passed instead if
    this option set to 0. Default is 0.

229
*   `RESET_TO_BL31`: Enable BL3-1 entrypoint as the CPU reset vector instead
230
231
232
233
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
    entrypoint) or 1 (CPU reset to BL3-1 entrypoint).
    The default value is 0.

234
235
236
237
*   `CRASH_REPORTING`: A non-zero value enables a console dump of processor
    register state when an unexpected exception occurs during execution of
    BL3-1. This option defaults to the value of `DEBUG` - i.e. by default
    this is only enabled for a debug build of the firmware.
238

239
240
*   `ASM_ASSERTION`: This flag determines whether the assertion checks within
    assembly source files are enabled or not. This option defaults to the
241
    value of `DEBUG` - that is, by default this is only enabled for a debug
242
243
    build of the firmware.

244
*   `TSP_INIT_ASYNC`: Choose BL3-2 initialization method as asynchronous or
245
246
    synchronous, (see "Initializing a BL3-2 Image" section in [Firmware
    Design]). It can take the value 0 (BL3-2 is initialized using
247
248
249
    synchronous method) or 1 (BL3-2 is initialized using asynchronous method).
    Default is 0.

250
251
252
253
254
255
*   `USE_COHERENT_MEM`: This flag determines whether to include the coherent
    memory region in the BL memory map or not (see "Use of Coherent memory in
    Trusted Firmware" section in [Firmware Design]). It can take the value 1
    (Coherent memory region is included) or 0 (Coherent memory region is
    excluded). Default is 1.

256
257
258
259
260
*   `TSPD_ROUTE_IRQ_TO_EL3`: A non zero value enables the routing model
    for non-secure interrupts in which they are routed to EL3 (TSPD). The
    default model (when the value is 0) is to route non-secure interrupts
    to S-EL1 (TSP).

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
*   `TRUSTED_BOARD_BOOT`: Boolean flag to include support for the Trusted Board
    Boot feature. When set to '1', BL1 and BL2 images include support to load
    and verify the certificates and images in a FIP. The default value is '0'.
    A successful build, when `TRUSTED_BOARD_BOOT=1`, depends upon the correct
    initialization of the `AUTH_MOD` option. Generation and inclusion of
    certificates in the FIP depends upon the value of the `GENERATE_COT` option.

*   `AUTH_MOD`: This option is used when `TRUSTED_BOARD_BOOT=1`. It specifies
    the name of the authentication module that will be used in the Trusted Board
    Boot sequence. The module must be located in `common/auth/<module name>`
    directory. The directory must contain a makefile `<module name>.mk` which
    will be used to build the module. More information can be found in
    [Trusted Board Boot]. The default module name is 'none'.

*   `GENERATE_COT`: Boolean flag used to build and execute the `cert_create`
    tool to create certificates as per the Chain of Trust described in
    [Trusted Board Boot].  The build system then calls the `fip_create` tool to
    include the certificates in the FIP. Default value is '0'.

    Specify `TRUSTED_BOARD_BOOT=1` and `GENERATE_COT=1` to include support for
    the Trusted Board Boot Sequence in the BL1 and BL2 images and the FIP.

    Note that if `TRUSTED_BOARD_BOOT=0` and `GENERATE_COT=1`, the BL1 and BL2
    images will not include support for Trusted Board Boot. The FIP will still
    include the key and content certificates. This FIP can be used to verify the
    Chain of Trust on the host machine through other mechanisms.

    Note that if `TRUSTED_BOARD_BOOT=1` and `GENERATE_COT=0`, the BL1 and BL2
    images will include support for Trusted Board Boot, but the FIP will not
    include the key and content certificates, causing a boot failure.

*   `CREATE_KEYS`: This option is used when `GENERATE_COT=1`. It tells the
    certificate generation tool to create new keys in case no valid keys are
    present or specified. Allowed options are '0' or '1'. Default is '1'.

*   `ROT_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the ROT private key in PEM format.

*   `TRUSTED_WORLD_KEY`: This option is used when `GENERATE_COT=1`. It
    specifies the file that contains the Trusted World private key in PEM
    format.

*   `NON_TRUSTED_WORLD_KEY`: This option is used when `GENERATE_COT=1`. It
    specifies the file that contains the Non-Trusted World private key in PEM
    format.

*   `BL30_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the BL3-0 private key in PEM format.

*   `BL31_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the BL3-1 private key in PEM format.

*   `BL32_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the BL3-2 private key in PEM format.

*   `BL33_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the BL3-3 private key in PEM format.

319
320
321
#### FVP specific build options

*   `FVP_TSP_RAM_LOCATION`: location of the TSP binary. Options:
322
    -   `tsram` : Trusted SRAM (default option)
323
    -   `tdram` : Trusted DRAM
324
    -   `dram`  : Secure region in DRAM (configured by the TrustZone controller)
325

326
327
For a better understanding of FVP options, the FVP memory map is explained in
the [Firmware Design].
328

329
330
331
332
333
334
#### Juno specific build options

*   `PLAT_TSP_LOCATION`: location of the TSP binary. Options:
    -   `tsram` : Trusted SRAM (default option)
    -   `dram`  : Secure region in DRAM (set by the TrustZone controller)

335
336
337
338
339
340
341
342
343
344
345
346
347
348
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

349
Create a Firmware package that contains existing BL2 and BL3-1 images:
350
351
352
353

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
354
       --bl2 build/<platform>/debug/bl2.bin --bl31 build/<platform>/debug/bl31.bin
355
356
357
358

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
359
      file: 'build/<platform>/debug/bl2.bin'
360
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
361
      file: 'build/<platform>/debug/bl31.bin'
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
379
      --bl2 build/<platform>/release/bl2.bin
380
381
382
383

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
384
      file: 'build/<platform>/release/bl2.bin'
385
386
387
388
389
390
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
391
392
393

To compile a debug version and make the build more verbose use

394
395
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
396
    make PLAT=<platform> DEBUG=1 V=1 all fip
397
398
399
400
401
402
403
404
405
406
407

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
408
409
might need to be recalculated (see the "Memory layout of BL images" section in
the [Firmware Design]).
410
411
412

Extra debug options can be passed to the build system by setting `CFLAGS`:

413
414
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
415
    BL33=<path-to>/<bl33_image>                               \
416
    make PLAT=<platform> DEBUG=1 V=1 all fip
417
418


419
420
421
422
423
424
425
426
427
428
429
430
### Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL3-1 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
BL3-1 binary. Then to build the TSP image and include it into the FIP use:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
431
    make PLAT=<platform> SPD=tspd all fip
432
433
434

An additional boot loader binary file is created in the `build` directory:

435
*   `build/<platform>/<build-type>/bl32.bin`
436

437
438
439
The FIP will now contain the additional BL3-2 image. Here is an example
output from an FVP build in release mode including BL3-2 and using
FVP_AARCH64_EFI.fd as BL3-3 image:
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
      file: './build/fvp/release/bl31.bin'
    - Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
      file: './build/fvp/release/bl32.bin'
    - Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"


455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
### Building the Certificate Generation Tool

The `cert_create` tool can be built separately through the following commands:

    $ cd tools/cert_create
    $ make [DEBUG=1] [V=1]

`DEBUG=1` builds the tool in debug mode. `V=1` makes the build process more
verbose. The following command should be used to obtain help about the tool:

    $ ./cert_create -h

The `cert_create` tool is automatically built with the `fip` target when
`GENERATE_COT=1`.


### Building a FIP image with support for Trusted Board Boot

The Trusted Board Boot feature is described in [Trusted Board Boot]. The
following steps should be followed to build a FIP image with support for this
feature.

1.  Fulfill the dependencies of the `polarssl` authentication module by checking
    out the tag `polarssl-1.3.9` from the [PolarSSL Repository].

    The `common/auth/polarssl/polarssl.mk` contains the list of PolarSSL source
    files the module depends upon. `common/auth/polarssl/polarssl_config.h`
    contains the configuration options required to build the PolarSSL sources.

    Note that the PolarSSL SSL library is licensed under the GNU GPL version 2
    or later license. Using PolarSSL source code will affect the licensing of
    Trusted Firmware binaries that are built using this library.

2.  Ensure that the following command line variables are set while invoking
    `make` to build Trusted Firmware:

    *   `POLARSSL_DIR=<path of the directory containing PolarSSL sources>`
    *   `AUTH_MOD=polarssl`
    *   `TRUSTED_BOARD_BOOT=1`
    *   `GENERATE_COT=1`


497
### Checking source code style
498
499
500

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
501
502
the project Makefile contains two targets, which both utilise the
`checkpatch.pl` script that ships with the Linux source tree.
503

504
505
506
To check the entire source tree, you must first download a copy of
`checkpatch.pl` (or the full Linux source), set the `CHECKPATCH` environment
variable to point to the script and build the target checkcodebase:
507

508
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
509
510
511
512

To just check the style on the files that differ between your local branch and
the remote master, use:

513
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
514
515

If you wish to check your patch against something other than the remote master,
516
517
set the `BASE_COMMIT` variable to your desired branch. By default, `BASE_COMMIT`
is set to `origin/master`.
518
519


520
521
5.  Obtaining the normal world software
---------------------------------------
522

523
### Obtaining EDK2
524

525
526
527
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
528

529
To build the software to be compatible with the Foundation and Base FVPs, or the
530
Juno platform, follow these steps:
531

532
1.  Clone the [EDK2 source code][EDK2] from GitHub:
533

534
        git clone -n https://github.com/tianocore/edk2.git
535

536
537
538
539
540
    Not all required features are available in the EDK2 mainline yet. These can
    be obtained from the ARM-software EDK2 repository instead:

        cd edk2
        git remote add -f --tags arm-software https://github.com/ARM-software/edk2.git
541
        git checkout --detach v2.1-rc0
542

543
2.  Copy build config templates to local workspace
544

545
        # in edk2/
546
        . edksetup.sh
547

548
3.  Build the EDK2 host tools
549

550
551
        make -C BaseTools clean
        make -C BaseTools
552

553
4.  Build the EDK2 software
554

555
556
557
558
559
560
561
562
563
564
565
566
    1.  Build for FVP

            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64 \
            EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE \
            EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"

        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:

             Build/ArmVExpress-FVP-AArch64/RELEASE_GCC49/FV/FVP_AARCH64_EFI.fd
567

568
    2.  Build for Juno
569

570
571
572
            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/ArmJunoPkg/Makefile EDK2_ARCH=AARCH64 \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE
573

574
575
        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:
576

577
578
579
580
581
582
583
584
585
586
            Build/ArmJuno/RELEASE_GCC49/FV/BL33_AP_UEFI.fd

    The EDK2 binary should be specified as `BL33` in in the `make` command line
    when building the Trusted Firmware. See the "Building the Trusted Firmware"
    section above.

5.  (Optional) To build EDK2 in debug mode, remove `EDK2_BUILD=RELEASE` from the
    command line.

6.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
587
588
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
589

590
7.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
591
592
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
593

594
595
596
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
597

598
    Then rebuild EDK2 as described in step 3, using the following flag:
599

600
601
602
603
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
604

605

606
### Obtaining a Linux kernel
607

608
609
Preparing a Linux kernel for use on the FVPs can be done as follows
(GICv2 support only):
610
611
612
613
614

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

615
    Not all required features are available in the kernel mainline yet. These
616
    can be obtained from the ARM-software Linux repository instead:
617
618

        cd linux
619
        git remote add -f --tags arm-software https://github.com/ARM-software/linux.git
620
        git checkout --detach 1.3-Juno
621
622
623
624
625
626
627

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

628
629
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
630

631
632
633
634
635
The compiled Linux image will now be found at `arch/arm64/boot/Image`.


6.  Preparing the images to run on FVP
--------------------------------------
636

637
### Obtaining the Flattened Device Trees
638
639

Depending on the FVP configuration and Linux configuration used, different
640
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
641
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
642
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
643
and MMC support, and has only one CPU cluster.
644
645
646
647

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
648
    Base memory map configuration.
649
650
651

*   `fvp-base-gicv2legacy-psci.dtb`

652
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
653
654
655

*   `fvp-base-gicv3-psci.dtb`

656
657
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
658

659
660
661
662
663
664
665
666
667
668
669
670
671
672
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


673
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
674
is launched. Alternatively a symbolic link may be used.
675

676
677
678
679
680
### Preparing the kernel image

Copy the kernel image file `arch/arm64/boot/Image` to the directory from which
the FVP is launched. Alternatively a symbolic link may be used.

681
### Obtaining a root file-system
682
683
684
685
686

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

687
#### Prepare VirtioBlock
688
689
690
691
692

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

693
    NOTE: The unpacked disk image grows to 3 GiB in size.
694

695
696
        wget http://releases.linaro.org/14.12/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.9_20141211-701.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.9_20141211-701.img.gz
697
698
699
700
701
702
703
704
705

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
706
707
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
708
709
710
711
712

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

713
    1.  In EDK2, edit the following file:
714
715
716
717
718
719
720
721
722
723
724
725
726
727

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
728
    passing it the correct command line option. In the FVPs the following
729
    option should be provided in addition to the ones described in the
730
    "Running the software on FVP" section below.
731
732
733
734

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

735
    On the Base FVPs:
736

737
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
738

739
    On the Foundation FVP:
740

741
        --block-device="<path-to>/<file-system-image>"
742

743
744
745
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

746
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
747
748
749
750
751

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

752
#### Prepare RAM-disk
753

754
To prepare a RAM-disk root file-system, do the following:
755
756
757

1.  Download the file-system image:

758
        wget http://releases.linaro.org/14.12/openembedded/aarch64/linaro-image-lamp-genericarmv8-20141212-729.rootfs.tar.gz
759
760
761
762
763
764

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
765
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20141212-729.rootfs.tar.gz | cpio -id"
766
767
768
769
770
771
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
772
    launched from. Alternatively a symbolic link may be used.
773
774


775
776
7.  Running the software on FVP
-------------------------------
777

778
This version of the ARM Trusted Firmware has been tested on the following ARM
779
780
FVPs (64-bit versions only).

781
782
783
784
785
*   `Foundation_Platform` (Version 9.1, Build 9.1.33)
*   `FVP_Base_AEMv8A-AEMv8A` (Version 6.2, Build 0.8.6202)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 6.2, Build 0.8.6202)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 6.2, Build 0.8.6202)
*   `FVP_Base_Cortex-A57x2-A53x4` (Version 6.2, Build 0.8.6202)
786
787
788

NOTE: The build numbers quoted above are those reported by launching the FVP
with the `--version` parameter.
789
790
791

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
792

793
794
NOTE: The Foundation FVP does not provide a debugger interface.

795
796
797
798
Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

799
800
801
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

802
803

### Running on the Foundation FVP with reset to BL1 entrypoint
804

805
The following `Foundation_Platform` parameters should be used to boot Linux with
806
807
808
809
810
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

811
812
813
814
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

815
    <path-to>/Foundation_Platform             \
816
    --cores=4                                 \
817
    --secure-memory                           \
818
819
    --visualization                           \
    --gicv3                                   \
820
821
822
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
823

824
825
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
826
827
828
829
830
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

831
### Notes regarding Base FVP configuration options
832

833
834
Please refer to these notes in the subsequent "Running on the Base FVP"
sections.
835

836
837
838
1.  The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
    Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
    section above).
839

840
841
842
2.  Using `cache_state_modelled=1` makes booting very slow. The software will
    still work (and run much faster) without this option but this will hide any
    cache maintenance defects in the software.
843

844
845
846
3.  Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
    if a Linux RAM-disk file-system is used (see the "Obtaining a root
    file-system" section above).
847

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
4.  Setting the `-C bp.secure_memory` parameter to `1` is only supported on
    Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
    supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
    instructs the FVP to provide some helpful information if a secure memory
    violation occurs.

5.  This and the following notes only apply when the firmware is built with
    the `RESET_TO_BL31` option.

    The `--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>`
    parameter is used to load bootloader images into Base FVP memory (see the
    "Building the Trusted Firmware" section above). The base addresses used
    should match the image base addresses in `platform_def.h` used while linking
    the images. The BL3-2 image is only needed if BL3-1 has been built to expect
    a Secure-EL1 Payload.

6.  The `-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>` parameter, where
    X and Y are the cluster and CPU numbers respectively, is used to set the
    reset vector for each core.

7.  Changing the default value of `FVP_SHARED_DATA_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl31-binary>"@<base-address-of-bl31>` and
    `-C cluster<X>.cpu<X>.RVBAR=@<base-address-of-bl31>`, to the new value of
    `BL31_BASE` in `platform_def.h`.

8.  Changing the default value of `FVP_TSP_RAM_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl32-binary>"@<base-address-of-bl32>` to the new value of
    `BL32_BASE` in `platform_def.h`.
878

879
880
881
882
883
884
885
886

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
887

888
889
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
890
891
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
892
893
894
895
896
897
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
898

899
900
901
902
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
903
904
905
906

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

907
908
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
909
910
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
911
912
913
914
    -C cache_state_modelled=1                              \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
915

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
### Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
931
932
933
934
935
936
937
938
939
940
    -C cluster0.cpu0.RVBAR=0x04023000                            \
    -C cluster0.cpu1.RVBAR=0x04023000                            \
    -C cluster0.cpu2.RVBAR=0x04023000                            \
    -C cluster0.cpu3.RVBAR=0x04023000                            \
    -C cluster1.cpu0.RVBAR=0x04023000                            \
    -C cluster1.cpu1.RVBAR=0x04023000                            \
    -C cluster1.cpu2.RVBAR=0x04023000                            \
    -C cluster1.cpu3.RVBAR=0x04023000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000    \
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

### Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
957
958
959
960
961
962
963
964
965
966
    -C cluster0.cpu0.RVBARADDR=0x04023000                        \
    -C cluster0.cpu1.RVBARADDR=0x04023000                        \
    -C cluster0.cpu2.RVBARADDR=0x04023000                        \
    -C cluster0.cpu3.RVBARADDR=0x04023000                        \
    -C cluster1.cpu0.RVBARADDR=0x04023000                        \
    -C cluster1.cpu1.RVBARADDR=0x04023000                        \
    -C cluster1.cpu2.RVBARADDR=0x04023000                        \
    -C cluster1.cpu3.RVBARADDR=0x04023000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000    \
967
968
969
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

970
971
972
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
973
974
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
975
976
977
978
979
980

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

981
The AEMv8 Base FVP can be configured to support GICv2 at addresses
982
983
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
984
985
986
987
988
989

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

990
991
992
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
993
994
995

*   `SYS_ID.Build[15:12]`

996
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
997
    default value on the Base FVPs.
998
999
1000

*   `SYS_ID.Build[15:12]`

1001
1002
1003
1004
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
1005

1006
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
1007
BL3-3 images should be used.
1008

1009
1010
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

1011
1012
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
1013

1014
    <path-to>/Foundation_Platform             \
1015
    --cores=4                                 \
1016
    --secure-memory                           \
1017
1018
1019
1020
1021
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
1022
1023
1024

Explicit configuration of the `SYS_ID` register is not required.

1025
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
1026

1027
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
1028
1029
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
1044
    -C gicv3.gicv2-only=1                               \
1045
    -C bp.variant=0x0
1046

1047
1048
1049
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
1050
1051


1052
1053
8.  Running the software on Juno
--------------------------------
1054
1055
1056

### Preparing Trusted Firmware images

1057
1058
1059
1060
1061
1062
To execute the versions of software components on Juno referred to in this
document, the latest [Juno Board Recovery Image] must be installed. If you
have an earlier version installed or are unsure which version is installed,
follow the recovery image update instructions in the [Juno Software Guide]
on the [ARM Connected Community] website.

1063
The Juno platform requires a BL3-0 image to boot up. This image contains the
1064
1065
1066
runtime firmware that runs on the SCP (System Control Processor). This image is
embedded within the [Juno Board Recovery Image] but can also be
[downloaded directly][Juno SCP Firmware].
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Rebuild the Trusted Firmware specifying the BL3-0 image. Refer to the section
"Building the Trusted Firmware". Alternatively, the FIP image can be updated
manually with the BL3-0 image:

    fip_create --dump --bl30 <path-to>/<bl30-binary> <path-to>/<FIP-binary>

### Obtaining the Flattened Device Tree

Juno's device tree blob is built along with the kernel. It is located in:

    <path-to-linux>/arch/arm64/boot/dts/juno.dtb

1080
### Other Juno software information
1081

1082
Please refer to the [Juno Software Guide] to:
1083

1084
1085
1086
*   Deploy a root filesystem
*   Install and run the Juno binaries on the board
*   Obtain any other Juno software information
1087
1088


1089
1090
- - - - - - - - - - - - - - - - - - - - - - - - - -

1091
_Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved._
1092
1093


1094
[Firmware Design]:  ./firmware-design.md
1095

1096
1097
1098
1099
1100
1101
1102
1103
[ARM FVP website]:             http://www.arm.com/fvp
[ARM Connected Community]:     http://community.arm.com
[Juno Software Guide]:         http://community.arm.com/docs/DOC-8396
[Juno Board Recovery Image]:   http://community.arm.com/servlet/JiveServlet/download/9427-1-15432/board_recovery_image_0.10.1.zip
[Juno SCP Firmware]:           http://community.arm.com/servlet/JiveServlet/download/9427-1-15422/bl30.bin.zip
[Linaro Toolchain]:            http://releases.linaro.org/14.07/components/toolchain/binaries/
[EDK2]:                        http://github.com/tianocore/edk2
[DS-5]:                        http://www.arm.com/products/tools/software-tools/ds-5/index.php
1104
1105
[Polarssl Repository]:         https://github.com/polarssl/polarssl.git
[Trusted Board Boot]:          trusted-board-boot.md