arm_common.c 6.73 KB
Newer Older
1
/*
Roberto Vargas's avatar
Roberto Vargas committed
2
 * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
 */
#include <arch.h>
#include <arch_helpers.h>
8
#include <arm_xlat_tables.h>
9
#include <assert.h>
10
#include <debug.h>
11
12
#include <mmio.h>
#include <plat_arm.h>
13
#include <platform_def.h>
Roberto Vargas's avatar
Roberto Vargas committed
14
#include <platform.h>
15
#include <secure_partition.h>
16
17
18

/* Weak definitions may be overridden in specific ARM standard platform */
#pragma weak plat_get_ns_image_entrypoint
19
#pragma weak plat_arm_get_mmap
20
21
22
23
24
25

/* Conditionally provide a weak definition of plat_get_syscnt_freq2 to avoid
 * conflicts with the definition in plat/common. */
#if ERROR_DEPRECATED
#pragma weak plat_get_syscnt_freq2
#endif
26

27
28
/*
 * Set up the page tables for the generic and platform-specific memory regions.
29
30
 * The size of the Trusted SRAM seen by the BL image must be specified as well
 * as an array specifying the generic memory regions which can be;
31
32
 * - Code section;
 * - Read-only data section;
33
34
 * - Coherent memory region, if applicable.
 */
35
36
37

void arm_setup_page_tables(const mmap_region_t bl_regions[],
			   const mmap_region_t plat_regions[])
38
{
39
40
41
42
43
44
45
46
47
48
49
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
	const mmap_region_t *regions = bl_regions;

	while (regions->size != 0U) {
		VERBOSE("Region: 0x%lx - 0x%lx has attributes 0x%x\n",
				regions->base_va,
				(regions->base_va + regions->size),
				regions->attr);
		regions++;
	}
#endif
50
51
52
53
	/*
	 * Map the Trusted SRAM with appropriate memory attributes.
	 * Subsequent mappings will adjust the attributes for specific regions.
	 */
54
	mmap_add(bl_regions);
55
	/* Now (re-)map the platform-specific memory regions */
56
	mmap_add(plat_regions);
57

58
59
60
	/* Create the page tables to reflect the above mappings */
	init_xlat_tables();
}
61

62
uintptr_t plat_get_ns_image_entrypoint(void)
63
{
64
65
66
#ifdef PRELOADED_BL33_BASE
	return PRELOADED_BL33_BASE;
#else
67
	return PLAT_ARM_NS_IMAGE_OFFSET;
68
#endif
69
70
71
72
73
74
75
76
77
}

/*******************************************************************************
 * Gets SPSR for BL32 entry
 ******************************************************************************/
uint32_t arm_get_spsr_for_bl32_entry(void)
{
	/*
	 * The Secure Payload Dispatcher service is responsible for
78
	 * setting the SPSR prior to entry into the BL32 image.
79
80
81
82
83
84
85
	 */
	return 0;
}

/*******************************************************************************
 * Gets SPSR for BL33 entry
 ******************************************************************************/
86
#ifndef AARCH32
87
88
89
90
91
92
uint32_t arm_get_spsr_for_bl33_entry(void)
{
	unsigned int mode;
	uint32_t spsr;

	/* Figure out what mode we enter the non-secure world in */
93
	mode = EL_IMPLEMENTED(2) ? MODE_EL2 : MODE_EL1;
94
95
96
97
98
99
100
101
102

	/*
	 * TODO: Consider the possibility of specifying the SPSR in
	 * the FIP ToC and allowing the platform to have a say as
	 * well.
	 */
	spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
	return spsr;
}
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#else
/*******************************************************************************
 * Gets SPSR for BL33 entry
 ******************************************************************************/
uint32_t arm_get_spsr_for_bl33_entry(void)
{
	unsigned int hyp_status, mode, spsr;

	hyp_status = GET_VIRT_EXT(read_id_pfr1());

	mode = (hyp_status) ? MODE32_hyp : MODE32_svc;

	/*
	 * TODO: Consider the possibility of specifying the SPSR in
	 * the FIP ToC and allowing the platform to have a say as
	 * well.
	 */
	spsr = SPSR_MODE32(mode, plat_get_ns_image_entrypoint() & 0x1,
			SPSR_E_LITTLE, DISABLE_ALL_EXCEPTIONS);
	return spsr;
}
#endif /* AARCH32 */
125

126
127
128
/*******************************************************************************
 * Configures access to the system counter timer module.
 ******************************************************************************/
129
#ifdef ARM_SYS_TIMCTL_BASE
130
131
132
133
void arm_configure_sys_timer(void)
{
	unsigned int reg_val;

134
135
136
	/* Read the frequency of the system counter */
	unsigned int freq_val = plat_get_syscnt_freq2();

137
#if ARM_CONFIG_CNTACR
138
139
140
141
	reg_val = (1 << CNTACR_RPCT_SHIFT) | (1 << CNTACR_RVCT_SHIFT);
	reg_val |= (1 << CNTACR_RFRQ_SHIFT) | (1 << CNTACR_RVOFF_SHIFT);
	reg_val |= (1 << CNTACR_RWVT_SHIFT) | (1 << CNTACR_RWPT_SHIFT);
	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTACR_BASE(PLAT_ARM_NSTIMER_FRAME_ID), reg_val);
142
#endif /* ARM_CONFIG_CNTACR */
143
144
145

	reg_val = (1 << CNTNSAR_NS_SHIFT(PLAT_ARM_NSTIMER_FRAME_ID));
	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTNSAR, reg_val);
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

	/*
	 * Initialize CNTFRQ register in CNTCTLBase frame. The CNTFRQ
	 * system register initialized during psci_arch_setup() is different
	 * from this and has to be updated independently.
	 */
	mmio_write_32(ARM_SYS_TIMCTL_BASE + CNTCTLBASE_CNTFRQ, freq_val);

#ifdef PLAT_juno
	/*
	 * Initialize CNTFRQ register in Non-secure CNTBase frame.
	 * This is only required for Juno, because it doesn't follow ARM ARM
	 * in that the value updated in CNTFRQ is not reflected in CNTBASE_CNTFRQ.
	 * Hence update the value manually.
	 */
	mmio_write_32(ARM_SYS_CNT_BASE_NS + CNTBASE_CNTFRQ, freq_val);
#endif
163
}
164
#endif /* ARM_SYS_TIMCTL_BASE */
165
166
167
168
169
170
171
172

/*******************************************************************************
 * Returns ARM platform specific memory map regions.
 ******************************************************************************/
const mmap_region_t *plat_arm_get_mmap(void)
{
	return plat_arm_mmap;
}
173

174
#ifdef ARM_SYS_CNTCTL_BASE
175
176
177

unsigned int plat_get_syscnt_freq2(void)
{
Sandrine Bailleux's avatar
Sandrine Bailleux committed
178
	unsigned int counter_base_frequency;
179
180
181
182
183
184
185
186
187
188

	/* Read the frequency from Frequency modes table */
	counter_base_frequency = mmio_read_32(ARM_SYS_CNTCTL_BASE + CNTFID_OFF);

	/* The first entry of the frequency modes table must not be 0 */
	if (counter_base_frequency == 0)
		panic();

	return counter_base_frequency;
}
189

190
#endif /* ARM_SYS_CNTCTL_BASE */
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

#if SDEI_SUPPORT
/*
 * Translate SDEI entry point to PA, and perform standard ARM entry point
 * validation on it.
 */
int plat_sdei_validate_entry_point(uintptr_t ep, unsigned int client_mode)
{
	uint64_t par, pa;
	uint32_t scr_el3;

	/* Doing Non-secure address translation requires SCR_EL3.NS set */
	scr_el3 = read_scr_el3();
	write_scr_el3(scr_el3 | SCR_NS_BIT);
	isb();

	assert((client_mode == MODE_EL2) || (client_mode == MODE_EL1));
	if (client_mode == MODE_EL2) {
		/*
		 * Translate entry point to Physical Address using the EL2
		 * translation regime.
		 */
		ats1e2r(ep);
	} else {
		/*
		 * Translate entry point to Physical Address using the EL1&0
		 * translation regime, including stage 2.
		 */
		ats12e1r(ep);
	}
	isb();
	par = read_par_el1();

	/* Restore original SCRL_EL3 */
	write_scr_el3(scr_el3);
	isb();

	/* If the translation resulted in fault, return failure */
	if ((par & PAR_F_MASK) != 0)
		return -1;

	/* Extract Physical Address from PAR */
	pa = (par & (PAR_ADDR_MASK << PAR_ADDR_SHIFT));

	/* Perform NS entry point validation on the physical address */
	return arm_validate_ns_entrypoint(pa);
}
#endif