xlat_tables_common.c 11.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2016-2018, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <cassert.h>
11
#include <common_def.h>
12
13
14
#include <debug.h>
#include <platform_def.h>
#include <string.h>
15
#include <types.h>
16
#include <utils.h>
17
#include <xlat_tables.h>
18
#include "xlat_tables_private.h"
19
20
21
22
23
24
25

#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
#define LVL0_SPACER ""
#define LVL1_SPACER "  "
#define LVL2_SPACER "    "
#define LVL3_SPACER "      "
#define get_level_spacer(level)		\
26
27
28
			(((level) == U(0)) ? LVL0_SPACER : \
			(((level) == U(1)) ? LVL1_SPACER : \
			(((level) == U(2)) ? LVL2_SPACER : LVL3_SPACER)))
29
30
31
32
33
#define debug_print(...) tf_printf(__VA_ARGS__)
#else
#define debug_print(...) ((void)0)
#endif

34
#define UNSET_DESC	~0ULL
35
36
37
38

static uint64_t xlat_tables[MAX_XLAT_TABLES][XLAT_TABLE_ENTRIES]
			__aligned(XLAT_TABLE_SIZE) __section("xlat_table");

39
static unsigned int next_xlat;
40
41
42
static unsigned long long xlat_max_pa;
static uintptr_t xlat_max_va;

43
static uint64_t execute_never_mask;
44
static uint64_t ap1_mask;
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/*
 * Array of all memory regions stored in order of ascending base address.
 * The list is terminated by the first entry with size == 0.
 */
static mmap_region_t mmap[MAX_MMAP_REGIONS + 1];


void print_mmap(void)
{
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
	debug_print("mmap:\n");
	mmap_region_t *mm = mmap;
	while (mm->size) {
		debug_print(" VA:%p  PA:0x%llx  size:0x%zx  attr:0x%x\n",
				(void *)mm->base_va, mm->base_pa,
				mm->size, mm->attr);
		++mm;
	};
	debug_print("\n");
#endif
}

void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
69
		     size_t size, unsigned int attr)
70
71
72
{
	mmap_region_t *mm = mmap;
	mmap_region_t *mm_last = mm + ARRAY_SIZE(mmap) - 1;
73
74
	unsigned long long end_pa = base_pa + size - 1;
	uintptr_t end_va = base_va + size - 1;
75
76
77
78
79
80
81
82

	assert(IS_PAGE_ALIGNED(base_pa));
	assert(IS_PAGE_ALIGNED(base_va));
	assert(IS_PAGE_ALIGNED(size));

	if (!size)
		return;

83
84
85
	assert(base_pa < end_pa); /* Check for overflows */
	assert(base_va < end_va);

86
87
88
89
90
	assert((base_va + (uintptr_t)size - (uintptr_t)1) <=
					(PLAT_VIRT_ADDR_SPACE_SIZE - 1));
	assert((base_pa + (unsigned long long)size - 1ULL) <=
					(PLAT_PHY_ADDR_SPACE_SIZE - 1));

91
#if ENABLE_ASSERTIONS
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

	/* Check for PAs and VAs overlaps with all other regions */
	for (mm = mmap; mm->size; ++mm) {

		uintptr_t mm_end_va = mm->base_va + mm->size - 1;

		/*
		 * Check if one of the regions is completely inside the other
		 * one.
		 */
		int fully_overlapped_va =
			((base_va >= mm->base_va) && (end_va <= mm_end_va)) ||
			((mm->base_va >= base_va) && (mm_end_va <= end_va));

		/*
		 * Full VA overlaps are only allowed if both regions are
		 * identity mapped (zero offset) or have the same VA to PA
		 * offset. Also, make sure that it's not the exact same area.
		 */
		if (fully_overlapped_va) {
			assert((mm->base_va - mm->base_pa) ==
			       (base_va - base_pa));
			assert((base_va != mm->base_va) || (size != mm->size));
		} else {
			/*
			 * If the regions do not have fully overlapping VAs,
			 * then they must have fully separated VAs and PAs.
			 * Partial overlaps are not allowed
			 */

			unsigned long long mm_end_pa =
						     mm->base_pa + mm->size - 1;

			int separated_pa =
				(end_pa < mm->base_pa) || (base_pa > mm_end_pa);
			int separated_va =
				(end_va < mm->base_va) || (base_va > mm_end_va);

			assert(separated_va && separated_pa);
		}
	}

	mm = mmap; /* Restore pointer to the start of the array */

136
#endif /* ENABLE_ASSERTIONS */
137

138
139
140
141
	/* Find correct place in mmap to insert new region */
	while (mm->base_va < base_va && mm->size)
		++mm;

142
143
144
145
146
147
148
149
150
151
152
153
154
155
	/*
	 * If a section is contained inside another one with the same base
	 * address, it must be placed after the one it is contained in:
	 *
	 * 1st |-----------------------|
	 * 2nd |------------|
	 * 3rd |------|
	 *
	 * This is required for mmap_region_attr() to get the attributes of the
	 * small region correctly.
	 */
	while ((mm->base_va == base_va) && (mm->size > size))
		++mm;

156
157
158
159
160
161
162
163
164
165
166
	/* Make room for new region by moving other regions up by one place */
	memmove(mm + 1, mm, (uintptr_t)mm_last - (uintptr_t)mm);

	/* Check we haven't lost the empty sentinal from the end of the array */
	assert(mm_last->size == 0);

	mm->base_pa = base_pa;
	mm->base_va = base_va;
	mm->size = size;
	mm->attr = attr;

167
168
169
170
	if (end_pa > xlat_max_pa)
		xlat_max_pa = end_pa;
	if (end_va > xlat_max_va)
		xlat_max_va = end_va;
171
172
173
174
175
176
177
178
179
180
}

void mmap_add(const mmap_region_t *mm)
{
	while (mm->size) {
		mmap_add_region(mm->base_pa, mm->base_va, mm->size, mm->attr);
		++mm;
	}
}

181
182
static uint64_t mmap_desc(unsigned int attr, unsigned long long addr_pa,
			  unsigned int level)
183
{
184
	uint64_t desc;
185
186
	int mem_type;

187
188
189
	/* Make sure that the granularity is fine enough to map this address. */
	assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0);

190
	desc = addr_pa;
191
192
193
194
195
	/*
	 * There are different translation table descriptors for level 3 and the
	 * rest.
	 */
	desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
196
197
	desc |= (attr & MT_NS) ? LOWER_ATTRS(NS) : 0;
	desc |= (attr & MT_RW) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
198
	desc |= LOWER_ATTRS(ACCESS_FLAG);
199
	desc |= ap1_mask;
200

201
202
203
204
205
206
207
208
209
210
	/*
	 * Deduce shareability domain and executability of the memory region
	 * from the memory type.
	 *
	 * Data accesses to device memory and non-cacheable normal memory are
	 * coherent for all observers in the system, and correspondingly are
	 * always treated as being Outer Shareable. Therefore, for these 2 types
	 * of memory, it is not strictly needed to set the shareability field
	 * in the translation tables.
	 */
211
	mem_type = MT_TYPE(attr);
212
	if (mem_type == MT_DEVICE) {
213
		desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
214
215
216
217
218
219
		/*
		 * Always map device memory as execute-never.
		 * This is to avoid the possibility of a speculative instruction
		 * fetch, which could be an issue if this memory region
		 * corresponds to a read-sensitive peripheral.
		 */
220
221
		desc |= execute_never_mask;

222
223
224
225
226
227
228
	} else { /* Normal memory */
		/*
		 * Always map read-write normal memory as execute-never.
		 * (Trusted Firmware doesn't self-modify its code, therefore
		 * R/W memory is reserved for data storage, which must not be
		 * executable.)
		 * Note that setting the XN bit here is for consistency only.
229
		 * The function that enables the MMU sets the SCTLR_ELx.WXN bit,
230
231
232
		 * which makes any writable memory region to be treated as
		 * execute-never, regardless of the value of the XN bit in the
		 * translation table.
233
234
235
		 *
		 * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
		 * attribute to figure out the value of the XN bit.
236
		 */
237
238
239
		if ((attr & MT_RW) || (attr & MT_EXECUTE_NEVER)) {
			desc |= execute_never_mask;
		}
240
241
242
243
244
245
246

		if (mem_type == MT_MEMORY) {
			desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH);
		} else {
			assert(mem_type == MT_NON_CACHEABLE);
			desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
		}
247
248
249
250
251
252
	}

	debug_print((mem_type == MT_MEMORY) ? "MEM" :
		((mem_type == MT_NON_CACHEABLE) ? "NC" : "DEV"));
	debug_print(attr & MT_RW ? "-RW" : "-RO");
	debug_print(attr & MT_NS ? "-NS" : "-S");
253
	debug_print(attr & MT_EXECUTE_NEVER ? "-XN" : "-EXEC");
254
255
256
	return desc;
}

257
/*
258
259
260
261
262
263
264
 * Look for the innermost region that contains the area at `base_va` with size
 * `size`. Populate *attr with the attributes of this region.
 *
 * On success, this function returns 0.
 * If there are partial overlaps (meaning that a smaller size is needed) or if
 * the region can't be found in the given area, it returns -1. In this case the
 * value pointed by attr should be ignored by the caller.
265
 */
266
static int mmap_region_attr(mmap_region_t *mm, uintptr_t base_va,
267
			    size_t size, unsigned int *attr)
268
{
269
	/* Don't assume that the area is contained in the first region */
270
	int ret = -1;
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

	/*
	 * Get attributes from last (innermost) region that contains the
	 * requested area. Don't stop as soon as one region doesn't contain it
	 * because there may be other internal regions that contain this area:
	 *
	 * |-----------------------------1-----------------------------|
	 * |----2----|     |-------3-------|    |----5----|
	 *                   |--4--|
	 *
	 *                   |---| <- Area we want the attributes of.
	 *
	 * In this example, the area is contained in regions 1, 3 and 4 but not
	 * in region 2. The loop shouldn't stop at region 2 as inner regions
	 * have priority over outer regions, it should stop at region 5.
	 */
	for (;; ++mm) {
288
289

		if (!mm->size)
290
			return ret; /* Reached end of list */
291

292
		if (mm->base_va > base_va + size - 1)
293
			return ret; /* Next region is after area so end */
294

295
		if (mm->base_va + mm->size - 1 < base_va)
296
297
			continue; /* Next region has already been overtaken */

298
		if (!ret && mm->attr == *attr)
299
300
301
			continue; /* Region doesn't override attribs so skip */

		if (mm->base_va > base_va ||
302
			mm->base_va + mm->size - 1 < base_va + size - 1)
303
			return -1; /* Region doesn't fully cover our area */
304

305
306
		*attr = mm->attr;
		ret = 0;
307
	}
308
	return ret;
309
310
311
312
313
}

static mmap_region_t *init_xlation_table_inner(mmap_region_t *mm,
					uintptr_t base_va,
					uint64_t *table,
314
					unsigned int level)
315
{
316
	assert(level >= XLAT_TABLE_LEVEL_MIN && level <= XLAT_TABLE_LEVEL_MAX);
317

318
319
320
321
322
	unsigned int level_size_shift =
		       L0_XLAT_ADDRESS_SHIFT - level * XLAT_TABLE_ENTRIES_SHIFT;
	u_register_t level_size = (u_register_t)1 << level_size_shift;
	u_register_t level_index_mask =
		((u_register_t)XLAT_TABLE_ENTRIES_MASK) << level_size_shift;
323
324
325
326
327
328
329
330
331

	debug_print("New xlat table:\n");

	do  {
		uint64_t desc = UNSET_DESC;

		if (!mm->size) {
			/* Done mapping regions; finish zeroing the table */
			desc = INVALID_DESC;
332
		} else if (mm->base_va + mm->size - 1 < base_va) {
333
			/* This area is after the region so get next region */
334
335
336
337
			++mm;
			continue;
		}

338
339
		debug_print("%s VA:%p size:0x%llx ", get_level_spacer(level),
			(void *)base_va, (unsigned long long)level_size);
340

341
		if (mm->base_va > base_va + level_size - 1) {
342
			/* Next region is after this area. Nothing to map yet */
343
			desc = INVALID_DESC;
344
345
		/* Make sure that the current level allows block descriptors */
		} else if (level >= XLAT_BLOCK_LEVEL_MIN) {
346
347
348
349
350
			/*
			 * Try to get attributes of this area. It will fail if
			 * there are partially overlapping regions. On success,
			 * it will return the innermost region's attributes.
			 */
351
			unsigned int attr;
352
353
354
			int r = mmap_region_attr(mm, base_va, level_size, &attr);

			if (!r) {
355
356
357
				desc = mmap_desc(attr,
					base_va - mm->base_va + mm->base_pa,
					level);
358
			}
359
360
361
362
363
364
		}

		if (desc == UNSET_DESC) {
			/* Area not covered by a region so need finer table */
			uint64_t *new_table = xlat_tables[next_xlat++];
			assert(next_xlat <= MAX_XLAT_TABLES);
365
			desc = TABLE_DESC | (uintptr_t)new_table;
366
367
368
369
370
371
372
373
374
375

			/* Recurse to fill in new table */
			mm = init_xlation_table_inner(mm, base_va,
						new_table, level+1);
		}

		debug_print("\n");

		*table++ = desc;
		base_va += level_size;
376
377
	} while ((base_va & level_index_mask) &&
		 (base_va - 1 < PLAT_VIRT_ADDR_SPACE_SIZE - 1));
378
379
380
381
382

	return mm;
}

void init_xlation_table(uintptr_t base_va, uint64_t *table,
383
			unsigned int level, uintptr_t *max_va,
384
385
			unsigned long long *max_pa)
{
386
387
388
389
390
391
392
393
394
395
396
	int el = xlat_arch_current_el();

	execute_never_mask = xlat_arch_get_xn_desc(el);

	if (el == 3) {
		ap1_mask = LOWER_ATTRS(AP_ONE_VA_RANGE_RES1);
	} else {
		assert(el == 1);
		ap1_mask = 0;
	}

397
398
399
400
	init_xlation_table_inner(mmap, base_va, table, level);
	*max_va = xlat_max_va;
	*max_pa = xlat_max_pa;
}