memctrl_v2.c 9.94 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3
 * Copyright (c) 2019-2020, NVIDIA Corporation. All rights reserved.
4
 *
dp-arm's avatar
dp-arm committed
5
 * SPDX-License-Identifier: BSD-3-Clause
6
7
8
 */

#include <assert.h>
9
10
11
12
13
14
15
16
17
#include <string.h>

#include <arch_helpers.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <lib/mmio.h>
#include <lib/utils.h>
#include <lib/xlat_tables/xlat_tables_v2.h>

18
19
20
#include <mce.h>
#include <memctrl.h>
#include <memctrl_v2.h>
21
#include <smmu.h>
22
#include <tegra_def.h>
23
#include <tegra_platform.h>
24
#include <tegra_private.h>
25
26
27

/* Video Memory base and size (live values) */
static uint64_t video_mem_base;
28
static uint64_t video_mem_size_mb;
29
30

/*
31
 * Init Memory controller during boot.
32
33
34
35
36
 */
void tegra_memctrl_setup(void)
{
	INFO("Tegra Memory Controller (v2)\n");

37
	/* Initialize the System memory management unit */
38
	tegra_smmu_init();
39

40
41
	/* allow platforms to program custom memory controller settings */
	plat_memctrl_setup();
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	/*
	 * All requests at boot time, and certain requests during
	 * normal run time, are physically addressed and must bypass
	 * the SMMU. The client hub logic implements a hardware bypass
	 * path around the Translation Buffer Units (TBU). During
	 * boot-time, the SMMU_BYPASS_CTRL register (which defaults to
	 * TBU_BYPASS mode) will be used to steer all requests around
	 * the uninitialized TBUs. During normal operation, this register
	 * is locked into TBU_BYPASS_SID config, which routes requests
	 * with special StreamID 0x7f on the bypass path and all others
	 * through the selected TBU. This is done to disable SMMU Bypass
	 * mode, as it could be used to circumvent SMMU security checks.
	 */
	tegra_mc_write_32(MC_SMMU_BYPASS_CONFIG,
57
			  MC_SMMU_BYPASS_CONFIG_SETTINGS);
58
}
59

60
61
62
63
64
/*
 * Restore Memory Controller settings after "System Suspend"
 */
void tegra_memctrl_restore_settings(void)
{
65
66
	/* restore platform's memory controller settings */
	plat_memctrl_restore();
67

68
	/* video memory carveout region */
69
	if (video_mem_base != 0ULL) {
70
71
		tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO,
				  (uint32_t)video_mem_base);
72
73
		assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_LO)
			 == (uint32_t)video_mem_base);
74
75
		tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
				  (uint32_t)(video_mem_base >> 32));
76
77
78
79
80
81
		assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_HI)
			 == (uint32_t)(video_mem_base >> 32));
		tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB,
				  (uint32_t)video_mem_size_mb);
		assert(tegra_mc_read_32(MC_VIDEO_PROTECT_SIZE_MB)
			 == (uint32_t)video_mem_size_mb);
82
83

		/*
84
		 * MCE propagates the VideoMem configuration values across the
85
86
87
88
89
90
91
92
93
94
95
96
97
98
		 * CCPLEX.
		 */
		mce_update_gsc_videomem();
	}
}

/*
 * Secure the BL31 DRAM aperture.
 *
 * phys_base = physical base of TZDRAM aperture
 * size_in_bytes = size of aperture in bytes
 */
void tegra_memctrl_tzdram_setup(uint64_t phys_base, uint32_t size_in_bytes)
{
99
	/*
100
	 * Perform platform specific steps.
101
	 */
102
	plat_memctrl_tzdram_setup(phys_base, size_in_bytes);
103
104
}

105
106
107
108
109
110
111
112
/*
 * Secure the BL31 TZRAM aperture.
 *
 * phys_base = physical base of TZRAM aperture
 * size_in_bytes = size of aperture in bytes
 */
void tegra_memctrl_tzram_setup(uint64_t phys_base, uint32_t size_in_bytes)
{
113
	; /* do nothing */
114
115
}

116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*
 * Save MC settings before "System Suspend" to TZDRAM
 */
void tegra_mc_save_context(uint64_t mc_ctx_addr)
{
	uint32_t i, num_entries = 0;
	mc_regs_t *mc_ctx_regs;
	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
	uint64_t tzdram_base = params_from_bl2->tzdram_base;
	uint64_t tzdram_end = tzdram_base + params_from_bl2->tzdram_size;

	assert((mc_ctx_addr >= tzdram_base) && (mc_ctx_addr <= tzdram_end));

	/* get MC context table */
130
	mc_ctx_regs = plat_memctrl_get_sys_suspend_ctx();
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
	assert(mc_ctx_regs != NULL);

	/*
	 * mc_ctx_regs[0].val contains the size of the context table minus
	 * the last entry. Sanity check the table size before we start with
	 * the context save operation.
	 */
	while (mc_ctx_regs[num_entries].reg != 0xFFFFFFFFU) {
		num_entries++;
	}

	/* panic if the sizes do not match */
	if (num_entries != mc_ctx_regs[0].val) {
		ERROR("MC context size mismatch!");
		panic();
	}

	/* save MC register values */
	for (i = 1U; i < num_entries; i++) {
		mc_ctx_regs[i].val = mmio_read_32(mc_ctx_regs[i].reg);
	}

	/* increment by 1 to take care of the last entry */
	num_entries++;

	/* Save MC config settings */
	(void)memcpy((void *)mc_ctx_addr, mc_ctx_regs,
			sizeof(mc_regs_t) * num_entries);

	/* save the MC table address */
	mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_LO,
		(uint32_t)mc_ctx_addr);
163
164
	assert(mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_LO)
		== (uint32_t)mc_ctx_addr);
165
166
	mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_HI,
		(uint32_t)(mc_ctx_addr >> 32));
167
168
	assert(mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_MC_TABLE_ADDR_HI)
		== (uint32_t)(mc_ctx_addr >> 32));
169
170
}

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
static void tegra_lock_videomem_nonoverlap(uint64_t phys_base,
					   uint64_t size_in_bytes)
{
	uint32_t index;
	uint64_t total_128kb_blocks = size_in_bytes >> 17;
	uint64_t residual_4kb_blocks = (size_in_bytes & (uint32_t)0x1FFFF) >> 12;
	uint64_t val;

	/*
	 * Reset the access configuration registers to restrict access to
	 * old Videomem aperture
	 */
	for (index = MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0;
	     index < ((uint32_t)MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0 + (uint32_t)MC_GSC_CONFIG_REGS_SIZE);
	     index += 4U) {
		tegra_mc_write_32(index, 0);
	}

	/*
	 * Set the base. It must be 4k aligned, at least.
	 */
	assert((phys_base & (uint64_t)0xFFF) == 0U);
	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, (uint32_t)phys_base);
	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI,
		(uint32_t)(phys_base >> 32) & (uint32_t)MC_GSC_BASE_HI_MASK);

	/*
	 * Set the aperture size
	 *
	 * total size = (number of 128KB blocks) + (number of remaining 4KB
	 * blocks)
	 *
	 */
	val = (uint32_t)((residual_4kb_blocks << MC_GSC_SIZE_RANGE_4KB_SHIFT) |
			 total_128kb_blocks);
	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, (uint32_t)val);

	/*
	 * Lock the configuration settings by enabling TZ-only lock and
	 * locking the configuration against any future changes from NS
	 * world.
	 */
	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_CFG,
			  (uint32_t)MC_GSC_ENABLE_TZ_LOCK_BIT);

	/*
	 * MCE propagates the GSC configuration values across the
	 * CCPLEX.
	 */
}

static void tegra_unlock_videomem_nonoverlap(void)
{
	/* Clear the base */
	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, 0);
	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI, 0);

	/* Clear the size */
	tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, 0);
}

static void tegra_clear_videomem(uintptr_t non_overlap_area_start,
				 unsigned long long non_overlap_area_size)
{
235
236
	int ret;

237
238
	INFO("Cleaning previous Video Memory Carveout\n");

239
240
241
	/*
	 * Map the NS memory first, clean it and then unmap it.
	 */
242
	ret = mmap_add_dynamic_region(non_overlap_area_start, /* PA */
243
244
				non_overlap_area_start, /* VA */
				non_overlap_area_size, /* size */
245
				MT_DEVICE | MT_RW | MT_NS); /* attrs */
246
	assert(ret == 0);
247

248
	zeromem((void *)non_overlap_area_start, non_overlap_area_size);
249
250
	flush_dcache_range(non_overlap_area_start, non_overlap_area_size);

251
	ret = mmap_remove_dynamic_region(non_overlap_area_start,
252
		non_overlap_area_size);
253
	assert(ret == 0);
254
255
}

256
257
static void tegra_clear_videomem_nonoverlap(uintptr_t phys_base,
		unsigned long size_in_bytes)
258
{
259
260
261
	uintptr_t vmem_end_old = video_mem_base + (video_mem_size_mb << 20);
	uintptr_t vmem_end_new = phys_base + size_in_bytes;
	unsigned long long non_overlap_area_size;
262

263
264
265
266
267
268
269
270
	/*
	 * Clear the old regions now being exposed. The following cases
	 * can occur -
	 *
	 * 1. clear whole old region (no overlap with new region)
	 * 2. clear old sub-region below new base
	 * 3. clear old sub-region above new end
	 */
271
	if ((phys_base > vmem_end_old) || (video_mem_base > vmem_end_new)) {
272
		tegra_clear_videomem(video_mem_base,
273
				     video_mem_size_mb << 20U);
274
275
276
	} else {
		if (video_mem_base < phys_base) {
			non_overlap_area_size = phys_base - video_mem_base;
277
			tegra_clear_videomem(video_mem_base, non_overlap_area_size);
278
279
280
		}
		if (vmem_end_old > vmem_end_new) {
			non_overlap_area_size = vmem_end_old - vmem_end_new;
281
			tegra_clear_videomem(vmem_end_new, non_overlap_area_size);
282
283
		}
	}
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
}

/*
 * Program the Video Memory carveout region
 *
 * phys_base = physical base of aperture
 * size_in_bytes = size of aperture in bytes
 */
void tegra_memctrl_videomem_setup(uint64_t phys_base, uint32_t size_in_bytes)
{
	/*
	 * Setup the Memory controller to restrict CPU accesses to the Video
	 * Memory region
	 */

	INFO("Configuring Video Memory Carveout\n");

	if (video_mem_base != 0U) {
		/*
		 * Lock the non overlapping memory being cleared so that
		 * other masters do not accidently write to it. The memory
		 * would be unlocked once the non overlapping region is
		 * cleared and the new memory settings take effect.
		 */
		tegra_lock_videomem_nonoverlap(video_mem_base,
			video_mem_size_mb << 20);
	}
311
312

	/* program the Videomem aperture */
313
314
315
	tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO, (uint32_t)phys_base);
	tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
			  (uint32_t)(phys_base >> 32));
316
	tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB, size_in_bytes >> 20);
317

318
319
320
321
322
323
324
325
	/* Redundancy check for Video Protect setting */
	assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_LO)
		 == (uint32_t)phys_base);
	assert(tegra_mc_read_32(MC_VIDEO_PROTECT_BASE_HI)
		 == (uint32_t)(phys_base >> 32));
	assert(tegra_mc_read_32(MC_VIDEO_PROTECT_SIZE_MB)
		 == (size_in_bytes >> 20));

326
	/*
327
	 * MCE propagates the VideoMem configuration values across the
328
329
	 * CCPLEX.
	 */
330
331
332
333
334
335
336
337
338
339
340
	(void)mce_update_gsc_videomem();

	/* Clear the non-overlapping memory */
	if (video_mem_base != 0U) {
		tegra_clear_videomem_nonoverlap(phys_base, size_in_bytes);
		tegra_unlock_videomem_nonoverlap();
	}

	/* store new values */
	video_mem_base = phys_base;
	video_mem_size_mb = (uint64_t)size_in_bytes >> 20;
341
}
342
343
344
345
346
347
348
349

/*
 * This feature exists only for v1 of the Tegra Memory Controller.
 */
void tegra_memctrl_disable_ahb_redirection(void)
{
	; /* do nothing */
}
350
351
352
353
354

void tegra_memctrl_clear_pending_interrupts(void)
{
	; /* do nothing */
}