entrypoint.S 8.23 KB
Newer Older
1
/*
2
 * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
 */

#include <arch.h>
#include <asm_macros.S>
#include <bl_common.h>
#include <context.h>
11
#include <el3_common_macros.S>
12
13
14
#include <runtime_svc.h>
#include <smcc_helpers.h>
#include <smcc_macros.S>
15
#include <xlat_tables_defs.h>
16
17
18
19
20

	.globl	sp_min_vector_table
	.globl	sp_min_entrypoint
	.globl	sp_min_warm_entrypoint

21
22
23
24
25
26
27
28
29
30
31
	.macro route_fiq_to_sp_min reg
		/* -----------------------------------------------------
		 * FIQs are secure interrupts trapped by Monitor and non
		 * secure is not allowed to mask the FIQs.
		 * -----------------------------------------------------
		 */
		ldcopr	\reg, SCR
		orr	\reg, \reg, #SCR_FIQ_BIT
		bic	\reg, \reg, #SCR_FW_BIT
		stcopr	\reg, SCR
	.endm
32
33

vector_base sp_min_vector_table
34
35
36
37
38
39
40
	b	sp_min_entrypoint
	b	plat_panic_handler	/* Undef */
	b	handle_smc		/* Syscall */
	b	plat_panic_handler	/* Prefetch abort */
	b	plat_panic_handler	/* Data abort */
	b	plat_panic_handler	/* Reserved */
	b	plat_panic_handler	/* IRQ */
41
	b	handle_fiq		/* FIQ */
42
43
44
45
46
47


/*
 * The Cold boot/Reset entrypoint for SP_MIN
 */
func sp_min_entrypoint
48
49
50
51
52
53
#if !RESET_TO_SP_MIN
	/* ---------------------------------------------------------------
	 * Preceding bootloader has populated r0 with a pointer to a
	 * 'bl_params_t' structure & r1 with a pointer to platform
	 * specific structure
	 * ---------------------------------------------------------------
54
	 */
55
56
57
58
59
60
61
62
	mov	r11, r0
	mov	r12, r1

	/* ---------------------------------------------------------------------
	 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
	 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
	 * and primary/secondary CPU logic should not be executed in this case.
	 *
63
64
	 * Also, assume that the previous bootloader has already initialised the
	 * SCTLR, including the CPU endianness, and has initialised the memory.
65
	 * ---------------------------------------------------------------------
66
	 */
67
	el3_entrypoint_common					\
68
		_init_sctlr=0					\
69
70
71
72
73
74
75
76
77
		_warm_boot_mailbox=0				\
		_secondary_cold_boot=0				\
		_init_memory=0					\
		_init_c_runtime=1				\
		_exception_vectors=sp_min_vector_table

	/* ---------------------------------------------------------------------
	 * Relay the previous bootloader's arguments to the platform layer
	 * ---------------------------------------------------------------------
78
	 */
79
80
81
82
83
84
85
86
	mov	r0, r11
	mov	r1, r12
#else
	/* ---------------------------------------------------------------------
	 * For RESET_TO_SP_MIN systems which have a programmable reset address,
	 * sp_min_entrypoint() is executed only on the cold boot path so we can
	 * skip the warm boot mailbox mechanism.
	 * ---------------------------------------------------------------------
87
	 */
88
	el3_entrypoint_common					\
89
		_init_sctlr=1					\
90
91
92
93
94
95
96
97
98
99
100
		_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS	\
		_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU	\
		_init_memory=1					\
		_init_c_runtime=1				\
		_exception_vectors=sp_min_vector_table

	/* ---------------------------------------------------------------------
	 * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader
	 * to run so there's no argument to relay from a previous bootloader.
	 * Zero the arguments passed to the platform layer to reflect that.
	 * ---------------------------------------------------------------------
101
	 */
102
103
104
	mov	r0, #0
	mov	r1, #0
#endif /* RESET_TO_SP_MIN */
105

106
107
108
109
#if SP_MIN_WITH_SECURE_FIQ
	route_fiq_to_sp_min r4
#endif

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
	bl	sp_min_early_platform_setup
	bl	sp_min_plat_arch_setup

	/* Jump to the main function */
	bl	sp_min_main

	/* -------------------------------------------------------------
	 * Clean the .data & .bss sections to main memory. This ensures
	 * that any global data which was initialised by the primary CPU
	 * is visible to secondary CPUs before they enable their data
	 * caches and participate in coherency.
	 * -------------------------------------------------------------
	 */
	ldr	r0, =__DATA_START__
	ldr	r1, =__DATA_END__
	sub	r1, r1, r0
	bl	clean_dcache_range

	ldr	r0, =__BSS_START__
	ldr	r1, =__BSS_END__
	sub	r1, r1, r0
	bl	clean_dcache_range

	bl	smc_get_next_ctx
134
135
136

	/* r0 points to `smc_ctx_t` */
	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
137
138
139
	b	sp_min_exit
endfunc sp_min_entrypoint

140
141
142
143
144

/*
 * SMC handling function for SP_MIN.
 */
func handle_smc
145
146
	/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
	str	lr, [sp, #SMC_CTX_LR_MON]
147

148
	smcc_save_gp_mode_regs
149

150
	/*
151
152
	 * `sp` still points to `smc_ctx_t`. Save it to a register
	 * and restore the C runtime stack pointer to `sp`.
153
	 */
154
155
156
157
	mov	r2, sp				/* handle */
	ldr	sp, [r2, #SMC_CTX_SP_MON]

	ldr	r0, [r2, #SMC_CTX_SCR]
158
159
160
161
162
163
	and	r3, r0, #SCR_NS_BIT		/* flags */

	/* Switch to Secure Mode*/
	bic	r0, #SCR_NS_BIT
	stcopr	r0, SCR
	isb
164

165
166
167
	ldr	r0, [r2, #SMC_CTX_GPREG_R0]	/* smc_fid */
	/* Check whether an SMC64 is issued */
	tst	r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
168
169
	beq	1f
	/* SMC32 is not detected. Return error back to caller */
170
171
172
	mov	r0, #SMC_UNK
	str	r0, [r2, #SMC_CTX_GPREG_R0]
	mov	r0, r2
173
	b	sp_min_exit
174
1:
175
	/* SMC32 is detected */
176
177
178
	mov	r1, #0				/* cookie */
	bl	handle_runtime_svc

179
	/* `r0` points to `smc_ctx_t` */
180
181
182
	b	sp_min_exit
endfunc handle_smc

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
 * Secure Interrupts handling function for SP_MIN.
 */
func handle_fiq
#if !SP_MIN_WITH_SECURE_FIQ
	b plat_panic_handler
#else
	/* FIQ has a +4 offset for lr compared to preferred return address */
	sub	lr, lr, #4
	/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
	str	lr, [sp, #SMC_CTX_LR_MON]

	smcc_save_gp_mode_regs

	/*
	 * AArch32 architectures need to clear the exclusive access when
	 * entering Monitor mode.
	 */
	clrex

	/* load run-time stack */
	mov	r2, sp
	ldr	sp, [r2, #SMC_CTX_SP_MON]

	/* Switch to Secure Mode */
	ldr	r0, [r2, #SMC_CTX_SCR]
	bic	r0, #SCR_NS_BIT
	stcopr	r0, SCR
	isb

	push	{r2, r3}
	bl	sp_min_fiq
	pop	{r0, r3}

	b	sp_min_exit
#endif
endfunc handle_fiq

221
222
223
224
/*
 * The Warm boot entrypoint for SP_MIN.
 */
func sp_min_warm_entrypoint
225
226
227
228
229
	/*
	 * On the warm boot path, most of the EL3 initialisations performed by
	 * 'el3_entrypoint_common' must be skipped:
	 *
	 *  - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
230
	 *    programming the reset address do we need to initialied the SCTLR.
231
232
233
234
235
236
237
238
239
240
241
242
	 *    In other cases, we assume this has been taken care by the
	 *    entrypoint code.
	 *
	 *  - No need to determine the type of boot, we know it is a warm boot.
	 *
	 *  - Do not try to distinguish between primary and secondary CPUs, this
	 *    notion only exists for a cold boot.
	 *
	 *  - No need to initialise the memory or the C runtime environment,
	 *    it has been done once and for all on the cold boot path.
	 */
	el3_entrypoint_common					\
243
		_init_sctlr=PROGRAMMABLE_RESET_ADDRESS		\
244
245
246
247
248
		_warm_boot_mailbox=0				\
		_secondary_cold_boot=0				\
		_init_memory=0					\
		_init_c_runtime=0				\
		_exception_vectors=sp_min_vector_table
249

250
251
252
253
254
	/*
	 * We're about to enable MMU and participate in PSCI state coordination.
	 *
	 * The PSCI implementation invokes platform routines that enable CPUs to
	 * participate in coherency. On a system where CPUs are not
255
256
257
258
259
	 * cache-coherent without appropriate platform specific programming,
	 * having caches enabled until such time might lead to coherency issues
	 * (resulting from stale data getting speculatively fetched, among
	 * others). Therefore we keep data caches disabled even after enabling
	 * the MMU for such platforms.
260
	 *
261
262
263
264
	 * On systems with hardware-assisted coherency, or on single cluster
	 * platforms, such platform specific programming is not required to
	 * enter coherency (as CPUs already are); and there's no reason to have
	 * caches disabled either.
265
266
267
268
	 */
	mov	r0, #DISABLE_DCACHE
	bl	bl32_plat_enable_mmu

269
270
271
272
#if SP_MIN_WITH_SECURE_FIQ
	route_fiq_to_sp_min r0
#endif

273
274
275
276
277
278
279
#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
	ldcopr	r0, SCTLR
	orr	r0, r0, #SCTLR_C_BIT
	stcopr	r0, SCTLR
	isb
#endif

280
281
	bl	sp_min_warm_boot
	bl	smc_get_next_ctx
282
283
	/* r0 points to `smc_ctx_t` */
	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
284
285
286
287
288
289
290
291
292
293
	b	sp_min_exit
endfunc sp_min_warm_entrypoint

/*
 * The function to restore the registers from SMC context and return
 * to the mode restored to SPSR.
 *
 * Arguments : r0 must point to the SMC context to restore from.
 */
func sp_min_exit
294
	monitor_exit
295
endfunc sp_min_exit